Acids & Bases Book Reference pp.594 - 600

Definitions: Ionization: Strength: Strong Weak

Acid & base strength

- Strong acids & bases
 - 100% ionization (dissociation)
 - Really not an equilibrium
- HCI hydrochloric acid
- HNO₃ nitric acid

H₂SO₄ - sulfuric acid

LiOH - lithium hydroxide NaOH - sodium hydroxide KOH - potassium hydroxide

- Weak acids and bases
 - Less than 100% ionization (dissociation)
 - True equilibrium reactions

Strong acid & base

HNO₃ ----> H⁺¹ + NO₃⁻¹
Completely come apart
NaOH ----> Na⁺¹ + OH⁻¹
Completely dissolve

Weak Acids & Bases

C₂H₅OH <----> H⁺¹ + C₂H₅O⁻¹ Only produces some product

 Table 17
 Dissociation constants of Acids and Bases

Acids	Ka	Туре	Bases	КЪ	Туре
HCN	4 × 10 ⁻¹⁰	٦	$\rm H_2NCONH_2$	1.5× 10 ⁻¹⁴	ſ
H₃BO₃	5.8 × 10 ⁻¹⁰		С _б н ₅ Nн ₂	4.6× 10 ⁻¹⁰	} v.weak
с ₆ н ₅ он	1.3 × 10 ⁻¹⁰	Y v.weak	NH₄OH	1.8× 10 ⁻⁵	ì
H₂S	1.1 × 10 ⁻⁷	ļ	(CH ₃) ₃ N	7.4× 10 ⁻⁵	mook
сн₃соон	1.78× 10 ⁻⁵	·	CH3NH2	4.4× 10 ⁻⁴	} weak
нсоон	1.8 × 10 ⁻⁴	weak	$C_2H_5NH_2$	4.3× 10 ⁻⁴	
HF	6.7 × 10 ^{- 4}	}	Ca(OH) ₂	3.7× 10 ⁻³	moderately strong
HNO_2	4.5 × 10 ^{- 4}	[NaOH	> 10	Shong
HCI	> 10	J	КОН	> 10	
hno ₃	> 10	strong			ſ
H₂SO₄	> 10	Į			
HClO₄	> 10	7			
		•			

Scientists of Acid base chemistry

Arrhenius acids and bases

- Acid is any substance, which when dissolved in water, tends to increase the amount of H⁺
 HCI ----> H⁺ + Cl⁻
- Base is any substance, which when dissolved in water, tends to increase the amount of OH⁻
- NaOH ----> Na⁺ + OH⁻

These definitions are correct but not general enough to include the wide range of acid and base substances which are known to exist. In addition, they rely on the use of water as a solvent, which is also too narrow.

....

Bronsted-Lowry acids & bases

- Acid is defined as any substance that can donate a hydrogen ion (proton)
- Base is any substance that can accept a hydrogen ion (proton)
- Bronsted-Lowery acids and bases must come in what is called conjugate pairs

Conjugate pairs

• HCl + $NH_3 < ----> NH_4^{+1} + Cl^{-1}$ acid base CA CB

• $HCI + H_2O <==> H_3O^+ + CI^$ acid base CA CB

Label the conjugate pairs

$HNO_3 + KOH ----> KNO_3 + H_2O$

$CH_{3}COOH + H_{2}O < ---> CH_{3}COO^{-1} + H_{3}O^{+1}$