

- $\mathrm{C}+\mathrm{O}_{2}->\mathrm{CO}_{2}$
- This equation is already balanced
- What if it isn' t?

- $\mathrm{C}+\mathrm{O}_{2}->\mathrm{CO}$
- We need one more oxygen in the products.
- Can' t change the formula, because it describes what it is (carbon monoxide in this example)

- Must be used to make another CO
- But where did the other C come from?

- Must have started with two C
- $2 \mathrm{C}+\mathrm{O}_{2}->2 \mathrm{CO}$

Rules for balancing:

1 Assemble, write the correct formulas for all the reactants and products
2 Count the number of atoms of each type appearing on both sides
3 Balance the elements one at a time by adding coefficients (the numbers in front) save H and O until LAST!

4 Check to make sure it is balanced.

- Never change a subscript to balance an equation.
- If you change the formula you are describing a different reaction.
- $\mathrm{H}_{2} \mathrm{O}$ is a different compound than $\mathrm{H}_{2} \mathrm{O}_{2}$
- Never put a coefficient in the middle of a formula
- 2 NaCl is okay, Na 2 Cl is not.

Example

$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

Example
 $$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$
 $$
\begin{array}{lll} R & & P \\ \hline 2 & H & 2 \end{array}
$$
 $$
201
$$

Need twice as much O in the product

Example
 $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

R		P
2	H	2

2 O 1

Changes the O

Example
 $$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$
 $$
\begin{array}{lll} R & & P \\ \hline 2 & H & 2 \end{array}
$$
 $$
20 \backslash 2
$$

Also changes the H

Example
 $\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

 2 O K 2

Need twice as much H in the reactant

Example
 $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$

2 O K 2

Recount

$$
\begin{gathered}
\text { Example } \\
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
\frac{\mathrm{R} \quad \mathrm{P}}{4 \AA \mathrm{H} R 4} \\
2 \mathrm{O} \neq 2
\end{gathered}
$$

The equation is balanced, has the same number of each kind of atom on both sides

$$
\begin{aligned}
& \text { Balancing Examples } \\
& \text { - } \mathrm{AgNO}_{3}+\mathrm{Cu}_{->} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{Ag} \\
& \text { - _Mg + _ } \mathrm{N}_{2}->\text { _ }_{\mathrm{Mg}}^{3} \text { N } \mathrm{N}_{2} \\
& \text { - _P + _O } \mathrm{O}_{2}->\mathrm{P}_{4} \mathrm{O}_{10} \\
& \text { - _ } \mathrm{Na}+\text { _ }_{2} \mathrm{O}->\mathrm{H}_{2}+\mathrm{NaOH}^{2} \\
& \text { - }{ }_{-} \mathrm{CH}_{4}+{ }_{-} \mathrm{O}_{2}->\mathrm{CO}_{2}+{ }_{-} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

