Chapter 16: Acid - Base Titration and pH

16-1 Aqueous Solutions and the Concept of pH

- I. <u>Hydronium lons and Hydroxide lons</u>
 - A. Self-Ionization of Water
 - 1. Autoprotolysis

$$H_20(I) + H_20(I) \rightarrow H_30^+(aq) + OH^-(aq)$$

- 2. Molarity at 25°C
 - a. 1.0×10^{-7} moles H₃0⁺ per liter of solution
 - b. 1.0×10^{-7} moles OH⁻ per liter of solution
- B. Ionization Constant for Water (K_W)
 - 1. $K_W = [H_3O^+][OH^-] = (1.0 \times 10^{-7} M)(1.0 \times 10^{-7} M) = 1.0 \times 10^{-4} M^2$
 - 2. K_W is a constant at ordinary ranges of room temperatures
- C. Neutral, Acidic, and Basic Solutions
 - 1. Neutral
 - a. [H₃O⁺] = [OH⁻]
 - 2. Acidic

a. [H₃O⁺] > [OH⁻]

3. Basic

a. [H₃O⁺] > [OH⁻]

D. Calculating $[H_3O^+]$ and $[OH^-]$

1.
$$[H_3O^+] = \frac{1.0x10^{-14}M^2}{[OH^-]}$$

2. $[OH^-] = \frac{1.0x10^{-14}M^2}{[H_3O^+]}$

- 3. Assume that strong acids and bases are completely ionized in solution a. 1.0 M $H_2SO_4 = 2.0 \text{ M } H_3O^+$
 - b. $1.0 \text{ M} \text{ H}_2\text{SO}_4 = 2.0 \text{ M} \text{ H}_3\text{O}$

II. The pH Scale

A. pH

- 1. The negative of the common logarithm of the hydronium ion concentration a. pH = - log $[H_30^+]$
- B. pOH
 - The negative of the common logarithm of the hydroxide ion concentration

 pOH = log [OH⁻]

pH + pOH = 14.0

C. The pH Scale

- III. <u>Calculations Involving pH</u>
 - A. Calculation of pH from $[H_30^+]$ Concentration See worksheet on logarithms
 - B. Calculation of $[H_30^+]$ and $[OH^-]$ Concentration from pH See worksheet on antilogs
 - C. pH Calculations and the Strength of Acids and Bases
 - 1. Weak acids and weak bases cannot be assumed to be 100% ionized
 - 2. $[H_30^+]$ and $[OH^-]$ cannot be determined from acid and base concentrations, and must be determined experimentally

16-2 Determining pH and Titrations

- I. Indicators and pH Meters
 - A. Acid-Base Indicators
 - 1. Compounds whose colors are sensitive to pH
 - B. Transition Interval
 - 1. pH range over which an indicator color change occurs
 - 2. Indicators are useful when they change color in a pH range which includes the endpoint of the reaction
 - C. Choosing Indicators

Acid-Base Indicator Selections		
Combination	Endpoint	Indicator(s)
Strong acid - strong base	endpoint pH is 7	Litmus
		Bromthymol blue
Strong acid - weak base	endpoint is less than 7	Methyl orange
		Bromphenol blue
Weak acid – strong base	endpoint is greater than	Phenolphthalein
	7	Phenol red
Weak acid – weak base	endpoint pH can fall in a wide range	No single indicator is suitable

D. pH meter

1. Measures voltage difference between two electrodes

II. <u>Acid-Base Titration</u>

- A. Titration
 - 1. Controlled addition of the measured amount of a solution of a known concentration required to react completely with a measured amount of sol'n of unknown concentration
- B. Equivalence Point
 - 1. The point at which the solutions used in a titration are present in chemically equivalent amounts
- C. Titration Curves
 - 1. End point
 - a. the point in a titration at which the rxn is just completed

III. Molarity and Titration

- A. Standard Solution
 - 1. A solution that contains the precisely known concentration of a solute, used in titration to find the concentration of the solution of unknown concentration
- B. Primary Standard
 - 1. A highly purified solid compound used to check the concentration of the known solution in a titration
- C. Calculations with Molar Titrations
 - 1. Start with the balanced equation for the neutralization reaction and determine the chemically equivalent amounts of the acid and base
 - 2. Determine the moles of acid (or base) from the known solution used during the titration
 - 3. Determine the moles of solute of the unknown solution used during the titration
 - 4. Determine the molarity of the unknown solution