Unit 2 - Electrons and Periodic Behavior

I. <u>The Bohr Model of the Atom</u>

- A. Electron Orbits, or Energy Levels
 - 1. Electrons can circle the nucleus only in allowed paths or orbits
 - 2. The energy of the electron is greater when it is in orbits farther from the nucleus
 - 3. The atom achieves the ground state when atoms occupy the closest possible positions around the nucleus
 - 4. Electromagnetic radiation is emitted when electrons move closer to the nucleus
- B. Energy transitions
 - 1. Energies of atoms are fixed and definite quantities
 - 2. Energy transitions occur in jumps of discrete amounts of energy
 - 3. Electrons only lose energy when they move to a lower energy state

- C. Shortcomings of the Bohr Model
 - 1. Doesn't work for atoms larger than hydrogen (more than one electron)
 - 2. Doesn't explain chemical behavior

4-2 The Quantum Model of the Atom

I. <u>Atomic Orbitals and Quantum Numbers</u>

Quantum Numbers specify the properties of atomic orbitals and the properties of the electrons in orbitals

- A. Principal Quantum Number (n)
 - 1. Indicates the main energy levels occupied by the electron
 - 2. Values of n are positive integers
 - a. n=1 is closest to the nucleus, and lowest in energy
 - 3. The number of orbitals possible per energy level (or "shell") is equal to n^2
- B. Angular Momentum Quantum Number (*l*)
 - 1. Indicates the shape of the orbital
 - 2. Number of orbital shapes = n
 - a. Shapes are designated s, p, d, f
- C. Magnetic Quantum Number (m)
 - 1. The orientation of the orbital around the nucleus
 - a. s orbitals have only one possible orientation
 - m = 0
 - b. p orbitals have three, d have five and f have 7 possible orientations

Principal	Sublevels in main	Number of	Number of	Number of	
Quantum	energy level	orbitals per	electrons per	electrons per main	
Number (<i>n</i>)	(<i>n</i> sublevels)	sublevel	sublevel	energy level $(2n^2)$	
1	S	1	2	2	
2	S	1	2	8	
	р	3	6		
3	S	1	2	18	
	р	3	6		
	d	5	10		
4	S	1	2	32	
	р	3	6		
	d	5	10		
	f	7	14		

- D. Spin Quantum Number
 - 1. Indicates the fundamental spin states of an electron in an orbital
 - 2. Two possible values for spin, +1/2, -1/2
 - 3. A single orbital can contain only two electrons, which must have opposite spins

4-3 Electron Configurations

I. Writing Electrons Configurations

A. Rules

- 1. Aufbau Principle
 - a. An electron occupies the lowest-energy orbital that can receive it
- 2. Pauli Exclusion Principle
 - a. No two electrons in the same atom can have the same set of four quantum numbers
- 3. Hund's Rule
 - a. Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin

$$\frac{\uparrow}{2p} \frac{\uparrow}{2p} \frac$$

- B. Orbital Notation
 - 1. Unoccupied orbitals are represented by a line, _
 - a. Lines are labeled with the principal quantum number and the sublevel letter
 - 2. Arrows are used to represent electrons
 - a. Arrows pointing up and down indicate opposite spins
- C. Configuration Notation
 - 1. The number of electrons in a sublevel is indicated by adding a superscript to the sublevel designation

Hydrogen =
$$1s^1$$

Helium = $1s^2$
Lithium = $1s^22s^1$

- II. <u>Survey of the Periodic Table</u>
 - A. Elements of the Second and Third Periods
 - 1. Highest occupied energy level
 - a. The electron containing energy level with the highest principal quantum number
 - 2. Inner shell electrons
 - a. Electrons that are not in the highest energy level
 - 3. Octet
 - a. Highest energy level *s* and *p* electrons are filled (8 electrons)
 - b. Characteristic of noble gases, Group 18
 - 4. Noble gas configuration
 - a. Outer main energy level fully occupied, usually (except for He) by eight electrons
 - b. This configuration has extra stability
 - B. Elements of the Fourth Period
 - 1. Irregularity of Chromium
 - a. Expected: $1s^22s^22p^63s^23p^64s^23d^4$
 - b. Actual: $1s^22s^22p^63s^23p^64s^13d^5$
 - 2. Several transition and rare-earth elements borrow from smaller sublevels in order to half fill larger sublevels

5-1 History of the Periodic Table

- I. <u>Moseley and the Periodic Table (1911)</u>
 - A. Protons and Atomic Number
 - 1. Xray experiments revealed a way to determine the number of protons in the nucleus of an atom
 - The periodic table was found to be in atomic number order, not atomic mass order
 - a. The tellurium-iodine anomaly was explained
 - B. The Periodic Law

2.

1. The physical and chemical properties of the elements are periodic functions of their atomic numbers

II. <u>The Modern Periodic Table</u>

- A. Discovery of the Noble Gases
 - 1. 1868 Helium discovered as a component of the sun, based on the emission spectrum of sunlight
 - 2. 1894 William Ramsay discovers argon
 - 3. 1895 Ramsay finds helium on Earth
 - 4. 1898 Ramsay discovers krypton and xenon
 - 5. 1900 Freidrich Dorn discovers radon
- B. The Lanthanides
 - 1. Early 1900's the elements from cerium (#58) to lutetium (#71) are separated and identified
- C. The Actinides
 - 1. Discovery (or synthesis) of elements 90 to 103
- D. Periodicity
 - 1. Elements with similar properties are found at regular intervals within the "periodic" table

5-2 Electron Configuration and the Periodic Table

- I. <u>Periods and the Blocks of the Periodic Table</u>
 - A. Periods
 - 1. Horizontal rows on the periodic table
 - 2. Period number corresponds to the highest principal quantum number of the elements in the period
 - B. Sublevel Blocks
 - 1. Periodic table can be broken into blocks corresponding to s, p, d, f sublevels
- II. Blocks and Groups
 - A. *s*-Block, Groups 1 and 2
 - 1. Group 1 The alkali metals
 - a. One *s* electron in outer shell
 - b. Soft, silvery metals of low density and low melting points
 - c. Highly reactive, never found pure in nature
 - 2. Group 2 The alkaline earth metals
 - a. Two *s* electrons in outer shell
 - b. Denser, harder, stronger, less reactive than Group 1
 - c. Too reactive to be found pure in nature
 - B. d-Block, Groups 3 12
 - 1. Metals with typical metallic properties
 - 2. Referred to as "transition" metals
 - 3. Group number = sum of outermost *s* and *d* electrons
 - C. p-Block elements, Groups 13 18
 - 1. Properties vary greatly
 - a. Metals
 - (1) softer and less dense than d-block metals
 - (2) harder and more dense than s-block metals
 - b. Metalloids
 - (1) Brittle solids with some metallic and some nonmetallic properties
 - (2) Semiconductors
 - c. Nonmetals
 - (1) Halogens (Group 17) are most reactive of the nonmetals
 - D. f-Block, Lanthanides and Actinides
 - 1. Lanthanides are shiny metals similar in reactivity to the Group 2 metals
 - 2. Actinides
 - a. All are radioactive
 - b. Plutonium (94) through Lawrencium (103) are man-made

5-3 Electron Configuration and Periodic Properties

I. <u>Atomic Radii</u>

- A. Atomic Radius
 - 1. One half the distance between nuclei of identical atoms that are bonded together
- B. Trends
 - 1. Atomic radius tends to decrease across a period due to increasing positive nuclear charge
 - 2. Atomic radii tend to increase down a group due to increasing number energy levels (outer electrons are farther from the nucleus)

II. Ionization Energy

- A. Ion
 - 1. An atom or a group of atoms that has a positive or negative charge
- B. Ionization
 - 1. Any process that results in the formation of an ion
- C. Ionization Energy
 - 1. The energy required to remove one electron from a neutral atom of an element, measured in kilojoules/mole (kJ/mol)

A + energy \rightarrow A⁺ + e⁻

- D. Trends
 - 1. Ionization energy of main-group elements tends to increase across each period
 - a. Atoms are getting smaller, electrons are closer to the nucleus
 - 2. Ionization energy of main-group elements tends to decrease as atomic number increases in a group
 - a. Atoms are getting larger, electrons are farther from the nucleus
 - b. Outer electrons become increasingly more shielded from the nucleus by inner electrons
 - 3. Metals have a characteristic low ionization energy
 - 4. Nonmetals have a high ionization energy
 - 5. Noble gases have a very high ionization energy
- E. Removing Additional Electrons

Na + 496 kJ/mol \rightarrow Na⁺ + e⁻ Na⁺ + 4562 kJ/mol \rightarrow Na⁺⁺ + e⁻ Na⁺⁺ + 6912 kJ/mol \rightarrow Na⁺⁺⁺ + e⁻

- 1. Ionization energy increases for each successive electron
- 2. Each electron removed experiences a stronger effective nuclear charge
- 3. The greatest increase in ionization energy comes when trying to remove an electron from a stable, noble gas configuration

III. <u>Electron Affinity</u>

A. Electron Affinity

- 1. The energy change that occurs when an electron is acquired by a neutral atom, measured in kJ/mol
 - a. Most atoms release energy when they acquire an electron

 $A + e^- \rightarrow A^- + energy$ (exothermic)

b. Some atoms must be forced to gain an electron

 $A + e^- + energy \rightarrow A^-$ (endothermic)

- B. Trends
 - 1. Halogens have the highest electron affinities
 - 2. Metals have characteristically low electron affinities
 - 3. Affinity tends to increase across a period
 - a. Irregularities are due to the extra stability of half-filled and filled sublevels
 - 4. Electron affinity tends to decrease down a group
 - 5. Second electron affinities are always positive (endothermic)

IV. Ionic Radii

A. Cations

2.

- 1. Positive ions
 - Smaller than the corresponding atom
 - a. Protons outnumber electrons
 - b. Less shielding of electrons
- B. Anions
 - Negative ions
 - 2. Larger than the corresponding atoms
 - a. Electrons outnumber protons
 - b. Greater electron-electron repulsion
- C. Trends
 - 1. Ion size tends to increase downward within a group

V. <u>Valence Electrons</u>

- A. Valence Electrons
 - 1. The electrons available to be lost, gained, or shared in the formation of chemical compounds
 - 2. Main group element valence electrons are outermost energy level s and p sublevels

Group # 1 2 13 14 15 16 17 1 Number of values a functions 1 2 2 4 5 6 7 8									
Number of volces 1 2 4 5 6 7	Group #	1	2	13	14	15	16	17	18
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Number of valence Electrons	1	2	3	4	5	6	7	8

VI. <u>Electronegativity</u>

A. Electronegativity

- 1. A measure of the ability of an atom in a chemical compound to attract electrons
- 2. Elements that do not form compounds are not assigned electronegativities
- B. Trends
 - 1. Nonmetals have characteristically high electronegativity
 - a. Highest in the upper right corner
 - 2. Metals have characteristically low electronegativity
 - a. Lowest in the lower left corner of the table
 - 3. Electronegativity tends to increase across a period
 - 4. Electronegativity tends to decrease down a group of main-group elements