
Chapter 17 - Reaction Energy and Reaction Kinetics

17-1 Thermochemistry

Thermochemistry - The study of the changes in heat energy that accompany chemical reactions and physical changes

- I. <u>Heat and Temperature</u>
 - A. Calorimeter
 - 1. Heat given off or absorbed is determined from the temperature of a known mass of water

- B. Temperature
 - A measure of the average kinetic energy of the particles in a sample of matter
- C. Heat (or Heat Energy)
 - 1. The sum total of the kinetic energies of the particles in a sample of matter
 - a. Heat flows spontaneously from matter at higher temperature to matter at lower temperature
 - 2. Heat is usually measured in joules, J

$$1 \quad J = N \cdot m = \frac{kg \cdot m^2}{s^2}$$

a. Heat cannot be measured directly, but is measured by temperature changes when heat is transferred

II. Heat Capacity and Specific Heat

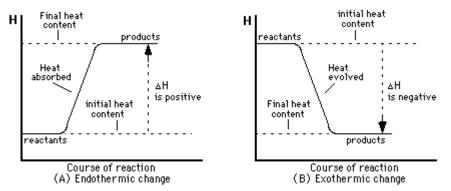
- A. Specific Heat
 - 1. The amount of heat required to raise the temperature of one gram of substance by one Celsius degree (1°C) or one kelvin (1 K)
- B. Calculating Specific Heat
 - 1. Specific Heat(*c*_p)

$$c_{p} = \frac{q}{m \cdot \Delta T}$$

Heat lost or gained with a change In temperature

$$q = c_p \cdot m \cdot \Delta T$$

m = mass


- III. Heat of Reaction
 - A. Enthalpy (H)
 - 1. Heat content of a substance under constant pressure
 - 2. Enthalpy cannot be measured directly (it is NOT the same as the temperature)
 - B. Heat of Reaction
 - 1. Quantity of heat released or absorbed during a chemical rxn
 - C. Thermochemical Equation
 - 1. An equation that includes the quantity of heat released or absorbed during the reaction as written

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(g) + 483.6 \text{ kJ}$$

- D. Enthalpy Change (ΔH)
 - 1. The amount of heat absorbed or lost by a system during a process at constant temperature

 $\Delta H = H_{products} - H_{reactants}$

- a. Δ His positive for an endothermic rxn
 - (1) Heat content of products is greater than the heat content of the reactants
- b. ΔH is negative for an exothermic rxn
 - (1) Heat content of the reactants is greater than the heat content of the products

- E. Writing Thermochemical Equations
 - 1. Fraction coefficients may be used because coefficients represent mole quantities, not atoms or molecules
 - 2. Use appropriate state/phase symbols (g) (l) (s)
 - 3. ΔH is proportional to the number of moles
 - 4. ΔH is usually not influenced significantly by the temperature of the system

IV. <u>Heat of Formation</u>

- A. Molar Heat of Formation $(\triangle H_f)$
 - 1. The heat of rxn released or absorbed when one mole of a compound is formed from its elements
 - a. ΔH_f of an element in its standard state is zero
 - b. Only a few compounds have positive heats of formation (See table 20-1 for Heat of Formation data)
 - 2. Heat of Formation is defined in terms of one mole of product

- V. <u>Stability and Heat of Formation</u>
 - A. Stable Compounds
 - 1. High negative $\triangle H_{f}^{0}$
 - 2. Rxns are usually spontaneous and vigorous
 - B. Unstable Compounds
 - 1. Small positive $\triangle H_f^0$ will decompose slowly at room temperature
 - 2. Low negative $\triangle H_f^0$ will decompose when heated mildly
 - C. Very Unstable Compounds
 - 1. High positive $\triangle H_{f}^{0}$, reacts or decomposes explosively

VI. <u>The Heat of Combustion</u>

- A. Heat of Combustion
 - 1. The heat of rxn released by the complete combustion of one mole of a substance
 - 2. Heat of combustion is defined in terms of one mole of reactant
- VII. Calculating Heats of Reaction
 - A. Hess's Law
 - 1. The overall enthalpy change in a reaction is equal to the sum of the enthalpy changes for the individual steps in the process

17-2 Driving Forces of Reactions

- A. Enthalpy and Reaction Tendency
 - 1. Tendency for processes to occur that lead to the lowest possible energy state
 - 2. Most spontaneous reactions have a negative value for $\triangle H$
- B. Entropy (S)
 - 1. Entropy is a measure of the degree of randomness of the particles, such as molecules in a system

increasing entropy		
H ₂ O (s)	H ₂ O (I)	H ₂ O (g)

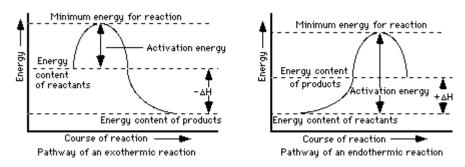
- C. Entropy and Reaction Tendency
 - 1. There is a tendency for the disorder of the system to increase
- D. Free Energy (G)
 - 1. Combined enthalpy-entropy function that helps to determine the spontaneity of a reaction
- E. Free Energy Change ($\triangle G$)
 - 1. A rxn system proceeds spontaneously in the way that lowers its free energy $(-\Delta G)$

 $\triangle G^0 = \triangle H^0 - T \triangle S^0$

Note: $T \triangle S$ means higher temp = higher entropy

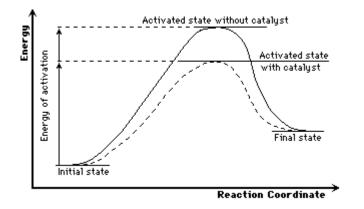
- a. the more negative $\triangle H^0$, the more negative is $\triangle G^0$
- b. the more positive $\ \Delta S^0$, the more negative is $\ \Delta G^0$

- 2. Predicting spontaneity
 - a. $\triangle H^0$ negative, $\triangle S^0$ positive
 - (1) rxn is spontaneous
 - b. $\triangle H^0$ positive, $\triangle S^0$ negative
 - (1) rxn is not spontaneous
 - c. $\triangle H^{0}$ negative, $\triangle S^{0}$ negative (1) do the math
 - d. $\triangle H^0$ positive, $\triangle S^0$ positive
 - (1) do the math


17-3 The Reaction Process

I. <u>Reaction Mechanisms</u>

- A. Reaction Mechanism
 - 1. The step-by-step sequence of reactions by which the overall chemical change occurs
 - 2. Reactions proceed by a series of simple steps called the reaction pathway
- B. Intermediates
 - 1. Species that appear in some steps but not in the net equation
- C. Homogeneous Reaction
 - 1. A reaction whose reactants and products exist in the same phase
- II. <u>The Two Principals of Collision Theory</u>
 - A. Particles must collide while favorably oriented
 - B. Particles must collide with enough energy to disrupt the bonds of the molecules


III. Activation Energy and the Activated Complex

- A. Activated Complex
 - 1. A transitional structure resulting from an effective collision that persists while old bonds are breaking and new bonds are forming
- B. Activation Energy
 - 1. The minimum energy required to transform reactants into the activated complex
- C. Sources of Activation Energy
 - 1. Flame, spark, high temperature, radiation
 - 2. Once an exothermic rxn is activated (reaches the top) the energy released by the rxn sustains the rxn by activating other molecules

17-4 Reaction Rate

- I. <u>Rate Influencing Factors</u>
 - A. Nature of the Reactants
 - 1. Rate depends on the particular bonds involved
 - B. Amount of Surface
 - 1. The more surface area of a solid exposed, the faster the rxn
 - C. Temperature
 - 1. Rates of rxns are roughly doubled for every 10 °C increase in temperature
 - a. increase in collision energy
 - b. increase in collision frequency
 - D. Effect of Concentration
 - 1. Increasing concentrations of liquid or gaseous solutions <u>usually</u> increases rates of rxns
 - 2. Actual effect of concentration change must be determined experimentally for each rxn
 - E. Presence of Catalysts
 - 1. A catalyst is a substance of substances that increase the rate of a chemical rxn without itself being changed
 - a. Homogeneous catalyst
 - (1) Catalyst is in the same phase as the reactants
 - b. Heterogeneous catalyst
 - (1) Catalyst in different phase from reactants

2. Catalysts provide an alternate reaction mechanism or pathway with a lower activation energy

II. Rate Laws for Reactions

- A. Rate Law
 - 1. An equation that relates reaction rate and concentrations of reactants
- B. Determining Effect of Concentration
 - 1. Vary concentration of one reactant
 - 2. Keep other concentrations and temperature constant
- C. Single Step Reactions
 - 1. $A + B \rightarrow 2C$
 - a. R = k[A][B]

(1) exponent = coefficient

2. 2C
$$\rightarrow$$
 A + B

a. $R = K[C]^2$

- D. Rxns Involving Several Steps
 - 1. Rate law is that for the slowest step (Rate-determining step)
 - 2. Rate law cannot be written from the equation for the net rxn
- E. General Form of the Rate Law
 - 1. R = $k[A]^{n}[B]^{m}$
 - a. R = rate of the rxn
 - b. [A] and [B] represent molar concentrations of reactants
 - c. *n* and *m* are exponents determined experimentally