Calculate the average mass of these isotopes

- 15\% 45 amu
- $10 \% 46 \mathrm{amu}$
- $26 \% 47 \mathrm{amu}$
- 14\% 48 amu
- 25 \% 49 amu
- $10 \% 50 \mathrm{amu}$

Answer

- $.15 \times 45=6.75$
- . 10 X $46=4.6$
- . $26 \times 47=12.22$
- . $14 \times 48=6.72$
- $.25 \times 49=12.25$
- $.1 \times 50=5$
- Sum $=47.54$

Check out this video Each arrow is an electron Can you see a pattern?

- http://intro.chem.okstate.edu/WorkshopFolder/ Electronconfnew.html

Quantum Mechanics the easy way!!??

- Rules to represent quantum mechanics, not reality.
- Really this is just a bookkeeping procedure
- The only real way to understand is with math. Heisenberg Uncertainty Principle (p382)
- Book reference pages - Read these
- Chapter 13 pp. 360 - 370
- Homework
- Page 369 \#'s 5 \& 6
- Page 370 \#7
- Page 409 \#11, 15, 16

Rules

- 1. Aufbau principle

Electrons enter the lowest energy orbital first
(an orbital is a statistical region of space where electrons are likely to be found)

- 2 Pauli Exclusion Principle
- Two electrons maximum in an individual orbital
- 3 Hunds Rule
- Parallel spin
- Each orbital in an energy level must have one electron before pairing them up
- 4. There are exceptions!! Always exceptions

Orbitals their capacities

- s orbital 2e- maximum
- p orbitals 6e- maximum
- d orbitals $10 \mathrm{e}-$ maximum
- f orbitals 14 e- maximum

Energy diagram

 matches the periodic table- Page 367 in your book IMPORTANT!

f-block

Element Total
Electrons

He
Li
Be
B 5

Orbital Diagram

Electron
Configuration
$1 s^{1}$
$1 s^{2}$
$1 s^{2} 2 s^{1}$
$1 s^{2} 2 s^{2}$
$1 s^{2} 2 s^{2} 2 p^{1}$

JJ Thomson

Thomson Apparatus

Thomson' s Result

FIGURE 3. Electron Experiment

