Energy (nrg)

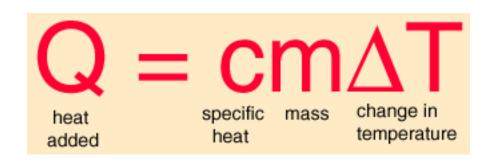
How energy changes the physical state of matter & energy involved in chemical Δ

Energy

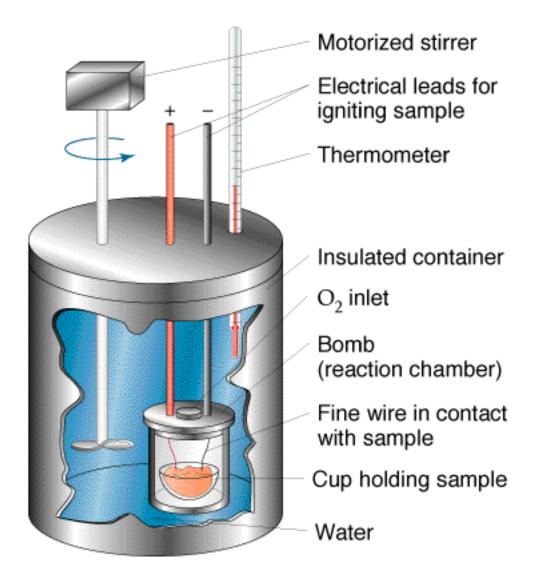
- Energy is measured in CALORIES and JOULES
- Calories(cal)
 - The amount of nrg required to raise 1.0 gram of water 1.0 °C
 - Kilocalories are often used, 1000cal = 1.0 kcal
 - kcal are use in diet, one dietary cal really is a kcal
- Joule (J)
 - is the SI unit and is based on work
 - Joule equals f x d = N m = J
 - Kilojoules (kJ) are commonly used
- Conversion factor 4.18 J = 1 cal

Energy Calculations

- As you will recall, temperature is a measure of the average kinetic energy (Maxwell distribution)
- So if temperature changes the energy must have changed.
- The amount of energy is also dependent on mass of material (more mass more energy)
- The third factor is something called specific heat. This needs its own slide to explain.


Specific Heat (C)

- Definition: the amount of heat necessary to move 1.00 gram of a substance 1.00 °C
- Unit of specific heat (C) are cal/g °C or J/g °C
- Like density, specific heat is an intensive physical property, every substance has a unique specific heat.
- Metals have low C and heat up quickly, water has a high C and stores energy well.


Specific heat table	
Material	Specific Heat cal/g° C
Brass	0.09
Iron	0.11
Nickel	0.106
Water	1.0
Aluminum	0.217
Lead	0.0305

And now some MATH. This is called Calorimetry

The basic equation

This a calorimeter use to measure energy change

$Q = C m \Delta T$

Find the increase in energy if the temperature of 150 mL of water Is increased from 20 °C to 75 °C

$$Q = 1.0 \text{ cal } x 150 \text{ g } x 55 \text{ oC} = 8250 \text{ cal}$$

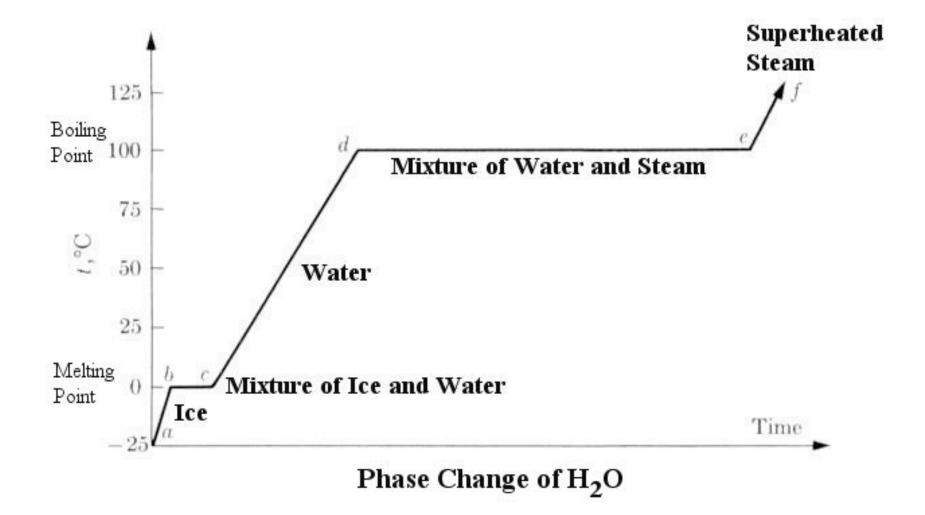
g oC

Now some basic Thermodynamics of chemical Δ

- System
- Surroundings
- Two types of reactions
 - Exothermic, energy leaving the system
 - Endothermic, energy into the system

Homework

- Reading chapter 11
- Page 299 questions: 6-10


Warm-up question

 Find the change in energy if 15.5 L of water @ 40 °C drops to a temperature of 26 °C.
 Express your answer in kJ. Will the surroundings heat up or cool down during this temperature change?

Energy and physical Δ

- When materials change in energy temperature changes. Faster particles when heating-up, slower particles when cooling.
 This is kinetic NRG Q= C m ΔT
- When changing phase the temperature doesn't change? The energy is either lost or gained by the substance

- This is potential NRG $\Delta H = H_f \text{ m or } \Delta H = H_v \text{ m}$

Specific heat

- For water
 - $C = 1.0 \text{ cal/g }^{\circ}C \text{ or } 4.18 \text{ J/g }^{\circ}C$
- For ice
 - $C = 0.5 \text{ cal/g }^{\circ}C \text{ or } 2.1 \text{ J/g }^{\circ}C$
- For steam

 $C = 0.4 \text{ cal/g }^{\circ}C \text{ or } 1.7 \text{ J/g }^{\circ}C$

Heat of fusion & heat of vaporization

- Water melting or freezing (heat of fusion) $H_f = 80 \text{ cal/g} = 334.4 \text{ J/g}$
- Water, boiling evaporation, condensation (heat of vaporization)

 $H_v = 540 \text{ cal/g} = 2257.2 \text{ J/g}$

Now, a problem

Find the energy needed to change 100 grams of ice @ -15.0 °C into super heated steam @120 °C.

We need 5 individual equations to find all the energy involved. This is easier to show you on the board.

Hint: solving these type of problems is more about being neat & organized, than it is about being too difficult.

- Ice $H = m C \Delta t = 100 g = 15^{\circ}C .5 cal/g \circ C$
- Melting $H = H_f m$
- Water H = m C Δt 100 g 100 °C 1 cal/g °C
- Vaporization $H = H_v m$
- Steam H = m C Δt 100 g 20 °C .4 cal/g °C