Percent yield calculation

- A student completely reacts 5.00 g of magnesium with an excess of oxygen to produce magnesium oxide. Analysis reveals 8.10 g of magnesium oxide. What is the student's percentage yield?

ENERGY Chapter 11

Any time there is a chemical reaction energy must be involved

Types of energy

- Kinetic - the energy of motion
- Potential - stored energy
- Check out this bowling ball!!

Energy in chemical reactions

- Exothermic reactions (energy is a product)

Energy is released by the chemical system

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}---->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\text { energy }
$$

- Endothermic reactions (nrg is a reactant) Energy is absorbed by the chemical system

$$
2 \mathrm{KClO}_{3}+\text { energy ----> } 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

Energy graphs

Energy graphs

$\Delta \mathrm{H}$ (enthalpy)

- In exothermic reactions $\Delta \mathrm{H}$ is negative
- Heat flows out of the system
- Reaction feels warm/hot
- In endothermic reactions $\Delta \mathrm{H}$ is positive
- Heat flows into the system
- Reaction feels cold

Energy units

- The amount of energy needed to raise 1.00 gram of water $1.00^{\circ} \mathrm{C}=$ calorie (cal)
- 1.0 cal $=4.18$ Joules (J) Physics types like the joule
- Also the British Thermal Unit (BTU)

The amount of energy needed to raise 1.00 pound of water $1.00^{\circ} \mathrm{F}$

How is energy measured?

- There is no direct energy meter. Energy is measured (calculated) indirectly
- Temperature is the average kinetic energy of a system
- To find energy, a difference of temperature is needed.

$$
\left(\Delta \mathrm{T}=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)
$$

How is energy measured?

- The difference in temperature coupled with the mass and something called specific heat lets you calculate energy
- The energy of a substance depends on three things:
- Change in temperature
- Mass of material
- Specific heat

Specific Heat

The specific heat (energy) of a substance is defined at the amount of heat that must be absorbed or lost for 1 g of that substance to change its temperature by $1^{\circ} \mathrm{C}$.

Specific Heat

MATERIAL	SPECIFIC HEAT (Joules/gram $\cdot{ }^{\circ} \mathrm{C}$)
Liquid water	4.18
Solid water (ice)	2.11
Water vapor	2.00
Dry air	1.01
Basalt	0.84
Granite	0.79
Iron	0.45
Copper	0.38
Lead	0.13

Kinetic energy formula

- Energy = change in temperature x specific heat x mass

$$
\begin{gathered}
q=\Delta H=\Delta T \quad \text { X } C \quad \text { X } \quad \mathrm{m} \\
q=\text { heat } \Delta H=\text { enthalpy }
\end{gathered}
$$

Enthalpy is the "heat content of a system at constant pressure" if the reaction is at a constant pressure these two values are equal

- Check out the units
${ }^{\circ} \mathrm{C} \underset{{ }^{\circ} \mathrm{C} \cdot \text { grams }}{\mathrm{cal}} \mathrm{x}$ grams $=$ Calories

Sample

- Find the energy needed to increase the temperature of water from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$. Assume that you have 1.0 liter of water.
- The specific heat of water is $1.0 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$

Answer

$\Delta \mathrm{H}=\left(75^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) \times 1.0 \mathrm{cal} / \mathrm{g}{ }^{\circ} \mathrm{C} \times 1000 \mathrm{~g}$

$\Delta \mathrm{H}=50,000 \mathrm{cal}$

