Percent yield calculation

 A student completely reacts 5.00g of magnesium with an excess of oxygen to produce magnesium oxide. Analysis reveals 8.10 g of magnesium oxide. What is the student's percentage yield?

ENERGY Chapter 11

Any time there is a chemical reaction energy must be involved

Types of energy

- Kinetic the energy of motion
- Potential stored energy
- Check out this bowling ball!!

Energy in chemical reactions

• Exothermic reactions (energy is a product) Energy is released by the chemical system

 $CH_4 + 2O_2 ----> CO_2 + 2H_2O + energy$

• Endothermic reactions (nrg is a reactant) Energy is absorbed by the chemical system

 $2 \text{ KClO}_3 + \text{energy} ----> 2 \text{ KCl} + 3 \text{ O}_2$

Energy graphs

Energy graphs

ΔH (enthalpy)

- In exothermic reactions ΔH is negative
 - Heat flows out of the system
 - Reaction feels warm/hot
- In endothermic reactions ΔH is positive
 - Heat flows into the system
 - Reaction feels cold

Energy units

- The amount of energy needed to raise
 1.00 gram of water 1.00 °C = calorie (cal)
- 1.0 cal = 4.18 Joules (J) Physics types like the joule
- Also the British Thermal Unit (BTU)
 The amount of energy needed to raise
 1.00 pound of water 1.00 °F

How is energy measured?

- There is no direct energy meter. Energy is measured (calculated) indirectly
- Temperature is the average kinetic energy of a system
- To find energy, a difference of temperature is needed.

$$(\Delta T = T_{\text{final}} - T_{\text{initial}})$$

How is energy measured?

- The difference in temperature coupled with the mass and something called specific heat lets you calculate energy
- The energy of a substance depends on three things:
 - Change in temperature
 - Mass of material
 - Specific heat

Specific Heat

The specific heat (energy) of a substance is defined at the amount of heat that must be absorbed or lost for 1 g of that substance to change its temperature by 1° C.

Specific Heat

MATERIAL	(Joules/gram • °C)
Liquid water	4.18
Solid water (ice)	2.11
Water vapor	2.00
Dry air	1.01
Basalt	0.84
Granite	0.79
Iron	0.45
Copper	0.38
Lead	0.13

Kinetic energy formula

 Energy = change in temperature x specific heat x mass

$$q = \Delta H = \Delta T x C x m$$

$$q = heat \Delta H = enthalpy$$

Enthalpy is the "heat content of a system at constant pressure" if the reaction is at a constant pressure these two values are equal

Check out the units

Sample

- Find the energy needed to increase the temperature of water from 25°C to 75°C. Assume that you have 1.0 liter of water.
- The specific heat of water is 1.0 cal/g °C

Answer

$\Delta H = (75 \circ C - 25 \circ C) \times 1.0 \text{ cal/g} \circ C \times 1000 \text{ g}$

$\Delta H = 50,000 \text{ cal}$