

Think to yourself

rHow do gas particles move/behavior?
What is the Kinetic Molecular Theory?
r Gases are mostly empty space
rParticles have no attractive or repulsive forces
rRapid constant random motion (really fast)
םElastic collision (no lost energy)

INature abhors a vacuum
Aristotle 384-322 B.C.
\neg We live submerged at the bottom of an ocean of air.
Evangelista Torricelli 1644

1. Gases

substances that exist in the gaseous phase under normal atmospheric conditions

$$
\mathrm{T}=25^{\circ} \mathrm{C} p=1 \mathrm{~atm}
$$

LA																	0
$\begin{gathered} \mathbf{1} \\ \mathbf{H} \\ 1.008 \end{gathered}$	ША											ПА	IVA	VA	VLA	VПA	$\begin{aligned} & \mathrm{He} \\ & 4.003 \end{aligned}$
$\begin{gathered} \mathbf{3} \\ \mathbf{L i} \\ 6.941 \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012 \end{gathered}$											$\mathbf{5}$ \mathbf{B} 10.81	$\stackrel{6}{\mathbf{C}}$	$\begin{array}{\|c\|} \hline 7 \\ \mathbf{N} \\ 14.01 \\ \hline \end{array}$	$\stackrel{8}{\ominus}$	$\begin{gathered} 9 \\ \hline 19.00 \end{gathered}$	$\begin{array}{\|c} \hline 10 \\ \mathrm{Ne} \\ 20.18 \end{array}$
$\begin{gathered} 11 \\ \mathbf{N a}_{22} \end{gathered}$	$\begin{aligned} & 12 \\ & \mathrm{MIg} \\ & 24.31 \end{aligned}$	ШВ	IVB	VB	VIB	VПB		VПIB		IB	ШВ	$\begin{gathered} 13 \\ \text { Al } \\ \text { 26.98 } \end{gathered}$	$\begin{array}{r} 14 \\ \mathrm{Si} \\ 28.09 \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{1 5} \\ \mathbf{P} \\ 30.97 \end{array}$	$\begin{gathered} \mathbf{1 6} \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{array}{\|c\|} \hline 17 \\ \mathrm{Cl} \\ \hline 3545 \\ \hline \end{array}$	$\underset{39.95}{18}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	${\underset{40}{20}}_{\text {Ca }}$	$\begin{gathered} 21 \\ \mathrm{SC} \\ 44.96 \end{gathered}$	${\underset{47.90}{22}}^{22}$	$\stackrel{23}{\mathbf{V}}$	$\stackrel{24}{\mathrm{C} r}$	$\begin{gathered} 25 \\ \mathrm{Mn} \mathbf{n} \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 55.85 \end{gathered}$	${ }^{27}$	$\begin{gathered} \mathbf{2 8} \\ \mathbf{N i} \\ 58.70 \end{gathered}$	$\stackrel{29}{\mathrm{C}}_{\mathrm{u}}$	$\mathbf{Z n n}_{65.38}$	$\begin{gathered} 31 \\ \mathbf{G a} \end{gathered}$ 69.72	$\begin{gathered} 32 \\ \mathbf{G e} \\ \hline \end{gathered}$	$\begin{aligned} & 33 \\ & \mathbf{A s} \end{aligned}$	${ }_{3}^{34}$	$\begin{gathered} 35 \\ \mathbf{B r} \\ 79.90 \end{gathered}$	36 $\mathbf{K r}$ 83
$\begin{gathered} \mathbf{3 7} \\ \mathbf{R} \mathbf{b} \end{gathered}$	$\begin{gathered} \mathbf{3 8} \\ \mathbf{S i} \\ \hline \end{gathered}$	$\stackrel{39}{\mathbf{Y}}$	$\begin{aligned} & \mathbf{4 0} \\ & \mathbf{Z 1} \cdot 22 \end{aligned}$	$\stackrel{41}{\mathbf{N} \mathbf{b}}$	$\begin{gathered} 42 \\ \text { M1O } \end{gathered}$	$\begin{aligned} & 43 \\ & \mathrm{~T} C \end{aligned}$	$\begin{array}{\|c\|} \hline 44 \\ \mathbf{R u} \mathbf{u} \\ 101.1 \\ \hline \end{array}$	$\begin{gathered} \mathbf{4 5} \\ \mathbf{R} \mathbf{~} \\ 102.9 \end{gathered}$	$\stackrel{46}{\mathbf{P d}_{\mathbf{d}}}$	$\begin{gathered} 47 \\ \mathrm{Ag} \\ \hline 1079 \end{gathered}$	$\stackrel{48}{\mathbf{C} \mathbf{d}}$	$\begin{gathered} 49 \\ \ln _{14.8} \end{gathered}$	$\begin{aligned} & 50 \\ & \mathbf{S n} \\ & \hline 18.7 \end{aligned}$	$\begin{aligned} & 51 \\ & \mathbf{S}_{121.8} \end{aligned}$	${ }_{127.5}^{52}$	$\begin{gathered} \mathbf{5 3} \\ 126.9 \end{gathered}$	$\begin{aligned} & 54 \\ & \mathrm{Xe} \end{aligned}$
${ }_{132.9}^{\mathbf{C}_{5}}$	$\begin{gathered} 56 \\ \mathbf{B a} \\ 137.3 \end{gathered}$	$\begin{gathered} 57: \\ L \mathbf{L a} \\ 138.9 \end{gathered}$	$\underset{178.5}{\mathbf{7 2}}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.9 \end{gathered}$	$\stackrel{74}{W}$	$\begin{gathered} 75 \\ \text { Re } \\ 186.2 \end{gathered}$	$\underset{190.2}{76}$	$\begin{gathered} \hline 77 \\ \mathbf{1 9} \mathbf{r} \\ 192.2 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{7 8} \\ \hline \mathbf{P t} \\ \hline 195.1 \\ \hline \end{array}$	$\begin{aligned} & 79 \\ & \mathrm{Al} \mathbf{u} \\ & \hline 197.0 \end{aligned}$	$\begin{gathered} \mathbf{8 0} \\ \mathbf{H g} \\ 2006 \end{gathered}$	$\overbrace{204.4}^{\mathbf{8 1}}$	$\begin{gathered} \mathbf{8 2} \\ \mathbf{P b} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{8 3} \\ \mathbf{B i} \\ 209.0 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{8 4} \\ & \mathbf{P O}_{(209)} \end{aligned}$	$\begin{aligned} & 85 \\ & \mathrm{At} \\ & (210) \end{aligned}$	$\begin{array}{\|c\|} \hline \mathbf{8 6} \\ \mathbf{R n} \\ (222) \\ \hline \end{array}$
$\begin{gathered} \mathbf{8 7} \\ \mathbf{F r}_{(223)} \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 8} \\ \mathbf{R a}_{(226.0} \end{gathered}$	$\underset{(227}{89}$	$\begin{aligned} & 104 \\ & \mathbf{R f} \end{aligned}$	$\begin{array}{r} 105 \\ \mathrm{Ha} \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \text { Unh } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 107 \\ \text { Uns } \end{array}$	108	$\begin{aligned} & 109 \\ & \text { Une } \end{aligned}$									

$\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$

$\mathrm{CO}, \mathrm{CO}_{2}$

$\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{3}$

$\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}$
SO_{2}

Jupiter
(H_{2}, He)

Io
$\left(\mathrm{SO}_{2}\right)$

2. Pressure

molecules/atoms of gas are constantly in motion

Atmospheric Pressure

Air Pressure is all around us

Standard Atmospheric Pressure

Torricelli
barometer

$$
1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }
$$

Temperature $=0^{\circ} \mathrm{C}$
pressure of the atmosphere is balanced by pressure exerted by mercury

Otto Von Guericke experiment

In 1654 he designed a vacuum pump to withdraw air from vessels.

SI units

pressure =
 force
 area
 $p=F / A$

Atmosphere (atm)
Millimeter of mercury (mmHg)
Torr (Torr)
Newton per square meter $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
Pascal (Pa)
Kilopascal (kPa)
Bar (bar)
Millibar (mb)

$$
\begin{aligned}
1 \mathrm{~atm} & =760 \mathrm{mmHg} \\
& =760 \mathrm{Torr} \\
& =101,325 \mathrm{~N} / \mathrm{m}^{2} \\
& =101,325 \mathrm{~Pa} \\
& =101.325 \mathrm{kPa} \\
& =1.01325 \mathrm{bar} \\
& =1013.25 \mathrm{mb}
\end{aligned}
$$

pressure measurement

manometer

Factors that influence

gases

1.Pressure
2. Volume
3. Temperature
4. Number of particles (moles)

$$
\mathrm{p}, \mathrm{~V}, \mathrm{~T}, \mathrm{n}
$$

Boyle's Law

pressure - volume

relationship
(temperature is constant)

Boyle
(1627-1691)

$P \propto 1 / V$

Sample Problems

A gas at 750 mm Hg pressure and a volume of 2.56 L is compressed to a new pressure 820 mm Hg . Find the new volume

A mole of gas @ STP is changed to a volume of 17:8 L. Find its new pressure in mm Hg

Charle' s Law

temperature - volume relationship
(pressure is constant)

1746-1823

$V \propto T$

$\mathrm{V}=$ constant T

$\mathrm{V} / \mathrm{T}=$ constant

$\mathrm{V}_{1} / \mathrm{T}_{1}=$ constant $\quad \mathrm{V}_{2} / \mathrm{T}_{2}=\mathrm{constant}$

$$
V_{1} / T_{1}=V_{2} / T_{2}
$$

Gay-Luassac's Law

5 Pressure - temperature relationship

FAlso known as Amonton's Law of Pressure-Temperature

$P \propto T$

$$
P_{1} / T_{1}=P_{2} / T_{2}
$$

Temperature T

Temperature 3 T

Avogadro' s Law

amount - volume relationship
(pressure and temperature are constant)

Avogadro
(1776-1856)

$\mathrm{n} \propto \mathrm{V}$

$\mathrm{n}=$ constant $\mathrm{x} V$

$\mathrm{n} / \mathrm{V}=$ constant

$$
\mathrm{n}_{1} / \mathrm{V}_{1}=\text { constant } \quad \mathrm{n}_{2} / \mathrm{V}_{2}=\text { constant }
$$

$$
\mathrm{n}_{1} / \mathrm{V}_{1}=\mathrm{n}_{2} / \mathrm{V}_{2}
$$

SUMMARY

Boyle's Law

$P \propto 1 / V$

Charles' s Law

$V \propto T$

Gay-Luassac's Law
$P \propto T$
Avogadro' s Law
$n \propto V$
@ a constant pressure find the new volume if a gas with an initial volume of 2.8 L @ a temperature of $22^{\circ} \mathrm{C}$ if the gas is cooled to $0^{\circ} \mathrm{C}$
@ a constant volume of 1.0 L the pressure of a gas is $2.4 \mathrm{~atm} @ 0^{\circ} \mathrm{C}$. Find the new temperature if the pressure is increased to 4.0 atm.

$$
\begin{aligned}
& \text { 1. IDEAL GAS EQUATION } \\
& \text { (1) } p \infty 1 / V \quad V \infty 1 / p \\
& \begin{array}{ll}
\text { (2) } V \infty T \\
(3) \mathrm{n} \infty \mathrm{~V}
\end{array} \quad \longrightarrow \quad V \infty T \\
& V \infty T \times n / p \\
& \mathrm{p} \times \mathrm{V}=\text { const } \times \mathrm{n} \times \mathrm{T}
\end{aligned}
$$

$[R]=$ atm $\times L / m o l \times K$
 $R=0.0821$ atm $\times L / m o l x$
 ideal gas constant

2. MOLAR VOLUME

What is the volume of 1 mol of a gas at 273.15 $\mathrm{K}\left(0^{\circ} \mathrm{C}\right)$ and $1 \mathrm{~atm}(760 \mathrm{mmHg})$?
standard temperature and pressure (STP)

$$
\begin{aligned}
\mathrm{p} \times \mathrm{V} & =\mathrm{n} \times \mathrm{R} \times \mathrm{T} \\
\mathrm{~V} & =22.4 \mathrm{~L}
\end{aligned}
$$

$$
\begin{gathered}
p \times V=n \times R \times T \\
V=22.4 L \\
V_{m}=22.4 L
\end{gathered}
$$

the molar volume at standard pressure and temperature is independent on the gas type

5. DALTON'S LAW

pure gases
gas mixtures
(atmospheres)
(1801)

DALTON' S LAW

the total pressure of a gas mixture, p, is the sum of the pressures of the individual gases (partial pressures) at a
constant temperature and volume

$$
p=p_{A}+p_{B}+p_{C}+\ldots
$$

$\mathrm{p} \times \mathrm{V}=\mathrm{n} \times \mathrm{R} \times T$

$$
\begin{array}{ll}
p_{A} \times V=n_{A} \times R \times T & p_{A}=n_{A} \times R \times T / V \\
p_{B} \times V=n_{B} \times R \times T \quad & p_{B}=n_{B} \times R \times T / V
\end{array}
$$

$$
\mathrm{p}=\mathrm{p}_{\mathrm{A}}+\mathrm{p}_{\mathrm{B}}
$$

$$
p=\left(n_{A}+n_{B}\right) \times R \times T / V
$$

$$
\mathrm{p} \times V=\mathrm{n} \times \mathrm{R} \times T
$$

$$
\begin{gathered}
p \times V=\left(n_{A}+n_{B}\right) \times R \times T \\
p_{A}=n_{A} \times R \times T / V \\
p_{A} / p=n_{A} /\left(n_{A}+n_{B}\right)=x_{A}
\end{gathered}
$$

mole fraction

$$
\begin{gathered}
x<1 \\
p_{A}=x_{A} \times p
\end{gathered}
$$

$2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

1. Kinetic Molecular Theory of Gases

Maxwell
(1831-1879)
macroscopic
(gas cylinder)

microscopic
(atoms/molecules)
Boltzmann
(1844-1906)

Kinetic Energy of Gases

 physical properties of gases can be described by motion of individual gas atoms/molecules
each macroscopic and microscopic particle in motion holds an energy (kinetic energy)

Assumptions of the Kinetic Theory of Gases

1. gases are composed of atoms/molecules which are separated from each other by a distance I much more than their own diameter d

$$
\begin{gathered}
d=10^{-10} \mathrm{~m} \\
I=10^{-3} \mathrm{~m} \ldots . . \text { few } \mathrm{m}
\end{gathered}
$$

molecules are mass points with negligible volume
2. gases are constantly in motion in random reactions and hold a kinetic energy

gases collide and transfer energy
(billiard ball model)
3. gases atoms/molecules
do not exert forces on each other
(absence of intermolecular interactions)
$F_{\text {(inter) }}=0$

$$
\mathrm{p}_{(\text {inter })}=0
$$

Gas Diffusion

2. Distribution of Molecular Speeds

Maxwell-Boltzmann distribution

3. Real Gases

deviation of ideal gas law at high pressures

$$
p \approx 90 \mathrm{~atm}
$$

