CHEMISTRY II B

Chapter 10 & Chapter 12

Gases

Think to yourself

How do gas particles move/behavior?
What is the Kinetic Molecular Theory?
Gases are mostly empty space
Particles have no attractive or repulsive forces
Rapid constant random motion (really fast)
Elastic collision (no lost energy)

Nature abhors a vacuum Aristotle 384 - 322 B.C.

We live submerged at the bottom of an ocean of air.Evangelista Torricelli 1644

1. Gases

substances that exist in the gaseous phase under normal atmospheric conditions

$T = 25^{\circ}C p = 1 atm$

	IA																	0	
	1 H 1.008	ПА											ША	IVA	VA	VIA	VIIA	2 He 4.003	
	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18	
	11 Na 22.99	12 Mg 24.31	шв	IVB	VB	VIB	VIIB		VIIB		в	шв	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95	
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35 D	36	
	K 39.10	Ca 40.08	Sc 44.96	Ti 47.90	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	CO 58.93	Ni 58.70	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80	
ľ	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
	Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	(98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd	114.8	Sn	Sb	Te 127.6	126.9	Xe 131.3	
	55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	
	Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	OS 190.2	192.2	Pt 195.1	Au 197.0	Hg 200.6	П 204.4	Pb	Bi 209.0	Po (209)	(210)	Rn (222)	
ŀ	87	88	89 **	104	105	106	107	108	102.2	199.1	101.0	200.0	204.4	201.2	200.0	(200)	(210)	(222)	
	Fr (223)	Ra (226.0)	Ac (227)	Rf	На	Unh	Uns		Une										

HF, HCI, HBr, HI

 CO, CO_2

CH₄, NH₃, H₂S, PH₃

NO, NO₂, N₂O

 SO_2

Helix Nebula

Orion Nebula

2. Pressure

molecules/atoms of gas are constantly in motion

Atmospheric Pressure

Otto Von Guericke experiment

In 1654 he designed a vacuum pump to withdraw air from vessels.

Atmosphere (atm) Millimeter of mercury (mmHg) Torr (Torr) Newton per square meter (N/m²) Pascal (Pa) Kilopascal (kPa) Bar (bar) Millibar (mb)

1 atm = 760 mmHg= 760 Torr

- $= 101,325 \text{ N/m}^2$
- = 101,325 Pa
- = 101.325 kPa
- = 1.01325 bar
- = 1013.25 mb

pressure measurement

- $P_{gas} = P_{bar.} + \Delta P$
 - $P_{\text{gas}} = P_{\text{bar.}} + \Delta P$ $(\Delta P \ge 0)$

(a) Gas pressure equal to barometric pressure

- (b) Gas pressure greater than barometric pressure
- $P_{\text{gas}} = P_{\text{bar.}} + \Delta P$ $(\Delta P < 0)$
 - (c) Gas pressure less than barometric pressure

manometer

Factors that influence gases

1.Pressure

2.Volume

3. Temperature

4. Number of particles (moles)

p, V, T, n

Boyle's Law

Boyle (1627-1691) pressure – volume relationship (temperature is constant)

Sample Problems

A gas at 750 mm Hg pressure and a volume of 2.56 L is compressed to a new pressure 820 mm Hg. Find the new volume

A mole of gas @ STP is changed to a volume of 17.8 L. Find its new pressure in mm Hg

Charle's Law

temperature – volume relationship (pressure is constant)

1746 - 1823

Gay-Luassac's Law

Pressure – temperature relationship

X Also known as Amonton's Law of Pressure-Temperature

Temperature T

Temperature 3T

Avogadro's Law

amount – volume relationship (pressure and temperature are constant)

Avogadro (1776-1856)

SUMMARY Boyle's Law $P \propto 1/V$ Charles's Law $V \propto T$ Gay-Luassac's Law $P \propto T$ Avogadro's Law $n \propto V$

@ a constant pressure find the new volume if a gas with an initial volume of 2.8 L @ a temperature of 22°C if the gas is cooled to 0°C

a constant volume of 1.0 L the pressure of a gas is 2.4 atm @ 0°C.
Find the new temperature if the pressure is increased to 4.0 atm.

$p \ge V = const \ge n \ge T$

$p \times V = n \times R \times T$

 $p \times V = R \times n \times T$

ideal gas equation

 $p \times V = n \times R \times T$

$[R] = atm \times L / mol \times K$

[R] = atm x L/ mol x K

[R] = atm x L / mol x K

R = 0.0821atm x L / mol x K

ideal gas constant

2. MOLAR VOLUME

What is the volume of 1 mol of a gas at 273.15 K (0°C) and 1 atm (760 mmHg)? standard temperature and pressure

(STP)

 $p \times V = n \times R \times T$ V = 22.4 L

$p \times V = n \times R \times T$

V = 22.4 L

$V_{\rm m} = 22.4 \, {\rm L}$

the molar volume at standard pressure and temperature is independent on the gas type

5. DALTON'S LAW

pure gases

gas mixtures (atmospheres)

Dalton (1801)

DALTON'S LAW

the total pressure of a gas mixture, p, is the sum of the pressures of the individual gases (partial pressures) at a constant temperature and volume

 $p = p_A + p_B + p_C + \dots$

$$p \times V = n \times R \times T$$

$$p_A \times V = n_A \times R \times T \rightarrow p_A = n_A \times R \times T/V$$

$$p_B \times V = n_B \times R \times T \rightarrow p_B = n_B \times R \times T/V$$

$$p = p_A + p_B$$

$$p = (n_A + n_B) \times R \times T/V$$

$$p \times V = n \times R \times T$$

 $p \times V = (n_A + n_B) \times R \times T$

 $p_A = n_A \times R \times T / V$

 $p_A / p = n_A / (n_A + n_B) = x_A$

mole fraction

x < 1

 $p_A = x_A \times p$

1. Kinetic Molecular Theory of Gases

macroscopic (gas cylinder)

microscopic (atoms/molecules)

Maxwell

(1831 - 1879)

Boltzmann (1844-1906)

Kinetic Energy of Gases

physical properties of gases can be described by motion of individual gas atoms/molecules

each macroscopic and microscopic particle in motion holds an energy (kinetic energy)

Assumptions of the Kinetic Theory of Gases

1. gases are composed of atoms/molecules which are separated from each other by a distance I much more than their own diameter d

 $d = 10^{-10} m$

 $I = 10^{-3}$ m.... few m

molecules are mass points with negligible volume 2. gases are constantly in motion in random reactions and hold a kinetic energy

gases collide and transfer energy (billiard ball model) 3. gases atoms/molecules

do not exert forces on each other

(absence of intermolecular interactions)

2. Distribution of Molecular Speeds

Maxwell-Boltzmann distribution

3. Real Gases

$p \times V = n \times R \times T$ (n = 1)

deviation of ideal gas law at high pressures

p ≈ 90 atm