Uncertainty in Measurements

- Two kinds of numbers
 Exact
 - counted values
 - 2 dogs
 - 26 letters
 - 3 brothers

defined numbers

- 12 inches per foot
- 1000 g per kilogram
- 2.54 cm per inch

Metric Practice

- 34.5 cm to m
- 56.7 L to mL
- 2.34 m to mm
- 355 ml to L
- 3456 mm to cm
- 5602 mm to m
- 1.2 km to m
- 100 g to cg

- 0.345 m
- 56700 mL
- 2340 mm
- 0.355L
- 345.6 cm
- 5.602 m
- 1200 m
- 10000 cg

Uncertainty in Measurements

- Two kinds of numbers:
 - Inexact Numbers
 - Numbers obtained by measurements
 - Some degree of uncertainty in the number
 - Equipment limitations
 - Human "error"
 - Examples:
 - Length
 - Mass
 - Density

Precision vs. Accuracy (chapter 3)

- Precision
 - how closely individual measurements agree with each other
- Accuracy

how closely individual measurements agree with the correct or true value

Good precision

Good accuracy and precision

Neither

Significant Figures

- All measuring devices have limitations
- Balances may read to the nearest :
 0.1 g (125.6 ± 0.1 g)
 Uncertainty in the tenths place
 - 0.01 g (23.04 ± 0.01 g)
 Uncertainty in the hundredths place
 - 0.001 g (118.906 ± 0.001 g)
 Uncertainty in the thousandths place

Significant Figures

- Scientists drop the <u>+</u> notation and assume that an uncertainty of at least 1 unit exists in the final digit.
 - All digits, including the final one, are called significant figures.

Rules for Significant Figures

- Nonzero digits are always significant.
 12.11 (4 significant figures)
 12345 (5 significant figures)
- Zeros between nonzero digits are always significant.
 - 10.1 (3 significant figures)
 19.06 (4 significant figures)
 100.005 (6 significant figures)

Rules for Significant Figures

Zeros at the beginning of a number are never significant.
 0.0003 (1 significant figure)
 0.00105 (3 significant figures)

Zeros that follow a non-zero digit <u>AND</u> are <u>to the right</u> of the decimal point are significant.
 1.10 (3 significant figures)
 0.009000 (4 significant figures)

Rules for Significant Figures

- Assume that zeros located at the end of numbers that do not have a decimal point are <u>not significant</u>.
 - 200 (1 significant figure)105000 (3 significant figures)

Scientific Notation and Significant Figures

Use scientific notation to remove ambiguity

10,100 meters **1.01 x 10**⁴ • measured to the nearest 100 meters •3 sig fig 1.010 x 10⁴ Measured to the nearest 10 meters •4 sig fig ■ 1.0100 x 10⁴ • Measured to the nearest 1 meter •5 sig fig

Significant Figures in Calculations

- Consider only measured numbers when determining the number of significant figures in an answer.
 - Ignore counted numbers
 - Ignore defined numbers
- Multiplication and Division (least most)
 The result must have the same # of significant figures as the measurement with the <u>fewest</u> significant figures.

Significant Figures in Calculations

Example: What is the density of a liquid with a volume of 3.0 mL and a mass of 5.057g?

D = <u>mass</u> = <u>5.057 g</u> = 1.685666 g/mL volume <u>3.0 mL</u>

1.7 g/mL

Rules for Rounding

 If the digit to the right of the last significant digit is < 5, leave the last significant digit alone.

1.743 → 1.7

 If the digit to the right of the last significant digit is ≥ 5, round up.

Rules for Rounding

- You cannot change the magnitude of the number when rounding!!
 - 102,433 rounded to 3 sig fig.
 - **395,952 rounded to 1 sig fig.**
 - **926 rounded to 2 sig fig.**

Rules for Rounding

You cannot change the magnitude of the number when rounding!!

102,433 rounded to 3 sig fig. = 102,000 not 102

395,952 rounded to 1 sig fig. = 400,000 not 4

926 rounded to 2 sig fig. = 930 not 93

Rules for Addition & Subtraction

- The answer obtained from addition or subtraction must have the same number of decimal places as the measurement which contains the <u>fewest number of decimal</u> <u>places.</u>
 - The total number of significant figures in the answer can be greater or less than the number of significant figures in any of the measurements.

Rules for Addition & Subtraction

- Do the addition or subtraction as indicated in the problem.
- Find the measurement that has the fewest decimal places.
- Count the number of decimal places in that measurement.
- Round the answer off so that the answer has the same number of decimal places.

Rules for Addition & Subtraction

Example: Add the following masses.

120.15 g 83 g + 0.530 g 203.680 g

- **2 decimal places**
- **0 decimal places**
- **3 decimal places**

Round answer to 0 decimal places

204 g

Unit Analysis

- Unit Analysis
 - A systematic method for solving problems in which units are carried thru the entire problem
 - units are multiplied together, divided into each other, or cancelled
 - Helps communicate your thinking
 - Helps ensure that solutions have the proper units
 - Uses conversion factors

Conversion Factors

 Conversion Factor

 a fraction whose numerator and denominator are the same quantity expressed in different units

used to change from one unit to another

Conversion Factors

• Examples of Conversion Factors

12 in = 1 ft	<u>12 in</u> or 1 ft	<u>1 ft</u> 12 in
100 cm = 1 m	 <u>100 cm</u> 1 m	or <u>1 m</u> 100 cm

Every relationship can give two conversion factors that are the inverses of each other. The value is the same.

Unit Analysis - One Conversion Factor

Example: A lab bench is 175 inches long. What is its length in feet?

Example: A lab bench is 175 inches long. What is its length in feet?

Given: 175 in. Find: Length (ft)

Conve	ersion	factor:
12 in	or	1 ft
1 ft		12 in.

ft = 175 jn X $\frac{1 \text{ ft}}{12 \text{ jn}}$ = 14.583333 ft = 14.6 ft

Example: A marble rolled 50.0 mm. How many meters did it roll?

Example: A marble rolled 50.0 mm. How many meters did it roll?

Given: 50.0 mm Find: dist. (m)

Conversion factor:1000 mmor1 m1 m1000 mm

m = 50.0 pm X 1 m = 0.05 m = 0.0500 m

Example: In Germany, a salesman I was with drove at 185 km/hr. What was our speed in mi/ hr?

Unit Analysis - One Conversion Factor

Example: In Germany, a salesman I was with drove at 185 km/hr. What was our speed in mi/ hr?

Given: 185 km/hr
Find: mi/hr

 $\underline{mi} = 185 \underline{km} X \underline{1 mi} = 114.97825 \underline{mi}$ hr hr 1.609 \underline{km} hr

Speed = 115 mi/hr