Uncertainty in Measurements

- Two kinds of numbers

■ Exact

- counted values
- 2 dogs
- 26 letters
- 3 brothers
- defined numbers
- 12 inches per foot
- 1000 g per kilogram
. 2.54 cm per inch

Metric Practice

- 34.5 cm to m
- 56.7 L to mL
- 2.34 m to mm
- 355 ml to L
- 3456 mm to cm
- 5602 mm to m
- 1.2 km to m
- 100 g to cg
- 0.345 m
- 56700 mL
- 2340 mm
- 0.355L
- 345.6 cm
- 5.602 m
- 1200 m
- 10000 cg

Uncertainty in Measurements

- Two kinds of numbers:
\square Inexact Numbers
- Numbers obtained by measurements
- Some degree of uncertainty in the number
- Equipment limitations
- Human "error"
- Examples:
- Length
- Mass
- Density

Precision vs. Accuracy (chapter 3)

- Precision

■ how closely individual measurements agree with each other

- Accuracy

■ how closely individual measurements agree with the correct or true value

Good precision

Good accuracy and precision

Neither

Significant Figures

- All measuring devices have limitations
- Balances may read to the nearest :
$■ 0.1 \mathrm{~g} \quad(125.6 \pm 0.1 \mathrm{~g})$
- Uncertainty in the tenths place
$■ 0.01 \mathrm{~g}(23.04 \pm 0.01 \mathrm{~g})$
- Uncertainty in the hundredths place
$■ 0.001 \mathrm{~g}(118.906 \pm 0.001 \mathrm{~g})$
- Uncertainty in the thousandths place

Significant Figures

- Scientists drop the \pm notation and assume that an uncertainty of at least 1 unit exists in the final digit.
- All digits, including the final one, are called significant figures.

Rules for Significant Figures

- Nonzero digits are always significant.
$\square 12.11$
(4 significant figures)
■ 12345
(5 significant figures)
- Zeros between nonzero digits are always significant.

■ 10.1
■ 19.06
$■ 100.005$

(3 significant figures)
(4 significant figures)
(6 significant figures)

Rules for Significant Figures

- Zeros at the beginning of a number are never significant.
$■ 0.0003 \quad$ (1 significant figure)
$■ 0.00105$ (3 significant figures)
- Zeros that follow a non-zero digit AND are to the right of the decimal point are significant.
■ 1.10
(3 significant figures)
$■ 0.009000$
(4 significant figures)

Rules for Significant Figures

- Assume that zeros located at the end of numbers that do not have a decimal point are not significant.
- 200
(1 significant figure)
■105000
(3 significant figures)

Scientific Notation and Significant Figures

- Use scientific notation to remove ambiguity
- 10,100 meters
$■ 1.01 \times 10^{4}$
- measured to the nearest 100 meters
- 3 sig fig
$■ 1.010 \times 10^{4}$
- Measured to the nearest 10 meters
$\bullet 4$ sig fig
$■ 1.0100 \times 10^{4}$
- Measured to the nearest 1 meter
- 5 sig fig

Significant Figures in Calculations

- Consider only measured numbers when determining the number of significant figures in an answer.
- Ignore counted numbers
- Ignore defined numbers
- Multiplication and Division (least most)

■ The result must have the same \# of significant figures as the measurement with the fewest significant figures.

Significant Figures in Calculations

Example: What is the density of a liquid with a volume of 3.0 mL and a mass of 5.057 g ?
$\mathrm{D}=\underset{\text { volume }}{\text { mass }}=\frac{5.057 \mathrm{~g}}{3.0 \mathrm{~mL}}=1.685666 \mathrm{~g} / \mathrm{mL}$

$1.7 \mathrm{~g} / \mathrm{mL}$

Rules for Rounding

- If the digit to the right of the last significant digit is < 5, leave the last significant digit alone.

$$
1.743 \quad 1.7
$$

- If the digit to the right of the last significant digit is ≥ 5, round up.

Rules for Rounding

- You cannot change the magnitude of the number when rounding!!

■ 102,433 rounded to 3 sig fig.
$■ 395,952$ rounded to 1 sig fig.
■ 926 rounded to 2 sig fig.

Rules for Rounding

- You cannot change the magnitude of the number when rounding!!
$\square 102,433$ rounded to 3 sig fig. $=102,000$
not 102
$■ 395,952$ rounded to 1 sig fig. $=400,000$ not 4
$■ 926$ rounded to 2 sig fig. $=930$ not 93

Rules for Addition \& Subtraction

- The answer obtained from addition or subtraction must have the same number of decimal places as the measurement which contains the fewest number of decimal places.
■ The total number of significant figures in the answer can be greater or less than the number of significant figures in any of the measurements.

Rules for Addition \& Subtraction

- Do the addition or subtraction as indicated in the problem.
- Find the measurement that has the fewest decimal places.
- Count the number of decimal places in that measurement.
- Round the answer off so that the answer has the same number of decimal places.

Rules for Addition \& Subtraction

Example: Add the following masses.

Unit Analysis

- Unit Analysis
$■$ A systematic method for solving problems in which units are carried thru the entire problem
- units are multiplied together, divided into each other, or cancelled
■ Helps communicate your thinking
\square Helps ensure that solutions have the proper units
■ Uses conversion factors

Conversion Factors

- Conversion Factor
\square a fraction whose numerator and denominator are the same quantity expressed in different units

■ used to change from one unit to another

Conversion Factors

- Examples of Conversion Factors

$$
\begin{aligned}
& 12 \mathrm{in}=1 \mathrm{ft} \longrightarrow \frac{12 \mathrm{in}}{1 \mathrm{ft}} \text { or } \frac{1 \mathrm{ft}}{12 \mathrm{in}} \\
& 100 \mathrm{~cm}=1 \mathrm{~m} \longrightarrow \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \text { or } \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}
\end{aligned}
$$

Every relationship can give two conversion factors that are the inverses of each other. The value is the same.

Unit Analysis - One Conversion Factor

Example: A lab bench is 175 inches long. What is its length in feet?

Dimensional Analysis - One Conversion Factor

Example: A lab bench is 175 inches long. What is its length in feet?

Given: 175 in. Find: Length (ft)

Conversion factor:
 $\frac{12 \mathrm{in}}{1 \mathrm{ft}}$
 or $\frac{1 \mathrm{ft}}{12 \mathrm{in}}$.

$\mathrm{ft}=175 \mathrm{in} \times \frac{1 \mathrm{ft}}{12 \mathrm{int}}=14.583333 \mathrm{ft}=14.6 \mathrm{ft}$

Dimensional Analysis - One Conversion Factor

Example: A marble rolled 50.0 mm . How many meters did it roll?

Dimensional Analysis - One Conversion Factor

Example: A marble rolled 50.0 mm . How many meters did it roll?

Given: $\mathbf{5 0 . 0}$ mm Find: dist. (m)

Conversion factor: 1000 mm or $1 \mathrm{~m} \quad 1000 \mathrm{~mm}$

$$
\mathrm{m}=50.0 \mathrm{~m} \times \mathrm{m} \times \frac{1 \mathrm{~m}}{1000 \mathrm{~m} / \mathrm{m}}=0.05 \mathrm{~m}=0.0500 \mathrm{~m}
$$

Dimensional Analysis - One Conversion Factor

Example: In Germany, a salesman I was with drove at 185 km/hr. What was our speed in mi/ hr?

Unit Analysis - One Conversion Factor

Example: In Germany, a salesman I was with drove at $185 \mathrm{~km} / \mathrm{hr}$. What was our speed in mi/ hr?
Given: 185 km/hr
Find: mi/hr
Conversion factor: $\frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}$ or $\frac{1 \mathrm{mi}}{1.609 \mathrm{~km}}$
$\frac{\mathrm{mi}}{\mathrm{hr}}=185 \underset{\mathrm{hr}}{\mathrm{k} / \mathrm{m}} \times \frac{1 \mathrm{mi}}{1.609 \mathrm{k} / \mathrm{m}}=114.97825 \frac{\mathrm{mi}}{\mathrm{hr}}$
Speed $=115 \mathrm{mi} / \mathrm{hr}$

