Chapter 6

Naming Compounds Writing Formulas

Systematic Naming

- There are too many compounds to remember the names of them all.
- Compound is made of two or more elements.
- Put together atoms.
- Name should tell us how many and what type of atoms.

Periodic Table

- More than a list of elements.
- Put in columns because of similar properties.
- Each column is called a group.

1A Representative elements 0

Metals

Metals

- Luster - shiny.
- Ductile - drawn into wires.
- Malleable - hammered into sheets.
- Conductors of heat and electricity.

Transition metals

- Dull

Non-metals

$\square \square$ Nonconductors
$\square \square$ - insulators

Metalloids or Semimetals

Atoms and ions

- Atoms are electrically neutral.
- Same number of protons and electrons.
- lons are atoms, or groups of atoms, with a charge.
- Different numbers of protons and electrons.
- Only electrons can move.
- Gain or lose electrons.

Anion

- A negative ion.
- Has gained electrons.
- Non metals can gain electrons.
- Charge is written as a super script on the right.
F-1 Has gained one electron
-2 Has gained two electrons

Cations

- Positive ions.
- Formed by losing electrons.
- More protons than electrons.
- Metals form cations.
$K+1$ Has lost one electron $\mathrm{Ca}{ }^{+2}$ Has lost two electrons

Compounds

- Follow the Law of Definite Proportion.
- Have a constant composition.
- Have to add the same number of atoms every time.
- Two types.

Formula Unit

- The smallest whole number ratio of atoms in an ionic compound.
- lons surround each other so you can' t say which is hooked to which. (pg 91)

Charges on ions

- For most of the Group A elements, the Periodic Table can tell what kind of ion they will form from their location.
- Elements in the same group have similar properties.
- Including the charge when they are ions.

Chemical Formulas

- Shows the kind and number of atoms in the smallest piece of a substance.
- Molecular formula- number and kinds of atoms in a molecule.
- CO_{2}
- $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
- $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Naming ions

- We will use the systematic way.
- Cation- if the charge is always the same (Group A) just write the name of the metal.
- Transition metals can have more than one type of charge.
- Indicate the charge with roman numerals in parenthesis.

Name these

- Na^{+1}
- Ca^{+2}
- Al^{+3}
- Fe^{+3}
- Fe^{+2}
- Pb^{+2}
- Li+1

Write Formulas for these

- Potassium ion
- Magnesium ion
- Copper (II) ion
- Chromium (VI) ion
- Barium ion
- Mercury (II) ion

Naming Anions

- Anions are always the same.
- Change the element ending to - ide
o F^{-1} Fluorine

Naming Anions

- Anions are always the same.
- Change the element ending to - ide
o F^{-1} Fluorin

Naming Anions

- Anions are always the same
- Change the element ending to - ide
o F^{-1} Fluori

Naming Anions

- Anions are always the same
- Change the element ending to - ide
o F^{-1} Fluor

Naming Anions

- Anions are always the same
- Change the element ending to - ide
o F^{-1} Fluori

Naming Anions

- Anions are always the same
- Change the element ending to - ide
- F^{-1} Fluoride

Naming Anions

- Anions are always the same
- Change the element ending to - ide
o F^{-1} Fluoride

Name these

- Cl^{-1}
- N^{-3}
- Br^{-1}
- O^{-2}

Write these

- Sulfide ion
- iodide ion
- phosphide ion
- Strontium ion

Polyatomic ions

- Groups of atoms that stay together and have a charge.
- Acetate $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-1}$
- Nitrate $\mathrm{NO}_{3}{ }^{-1}$
- Nitrite $\mathrm{NO}_{2}{ }^{-1}$
- Hydroxide OH^{-1}
- Permanganate $\mathrm{MnO}_{4}{ }^{-1}$
- Cyanide CN-1

Ions in Ionic Compounds

Naming Binary lonic Compounds

- Binary Compounds - 2 elements.
- lonic - a cation and an anion.
- To write the names just name the two ions.
- Easy with Representative elements.
- Group A
- $\mathrm{NaCl}=\mathrm{Na}^{+} \mathrm{Cl}^{-}=$sodium chloride
- $\mathrm{MgBr}_{2}=\mathrm{Mg}^{+2} \mathrm{Br}^{-}=$magnesium bromide

Naming Binary Ionic Compounds

- The problem comes with the transition metals.
- Need to figure out their charges.
- The compound must be neutral.
- same number of + and - charges.
- Use the anion to determine the charge on the positive ion.

Naming Binary Ionic Compounds

- Write the name of CuO
- Need the charge of Cu
- O is -2
- copper must be +2
- Copper (II) oxide
- Name CoCl_{3}
- Cl is -1 and there are three of them $=-3$
- Co must be +3 Cobalt (III) chloride

Naming Binary Ionic Compounds

- Write the name of $\mathrm{Cu}_{2} \mathrm{~S}$.
- Since S is -2 , the Cu_{2} must be +2 , so each one is +1 .
- copper (I) sulfide
- $\mathrm{Fe}_{2} \mathrm{O}_{3}$
- Each O is $-2 \quad 3 x-2=-6$
- Fe must $=+6 / 2$, so each is +3 .
- iron (III) oxide

Naming Binary Ionic Compounds

- Write the names of the following
- KCI
- $\mathrm{Na}_{3} \mathrm{~N}$
- CrN
- $\mathrm{Sc}_{3} \mathrm{P}_{2}$
- PbO
- PbO_{2}
- $\mathrm{Na}_{2} \mathrm{Se}$

Ternary lonic Compounds

- Will have polyatomic ions
- At least three elements
- name the ions
- NaNO_{3}
- CaSO_{4}
$-\mathrm{CuSO}_{3}$
- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{O}$

Polyatomic ions

- Sulfate $\mathrm{SO}_{4}{ }^{-2}$
- Sulfite $\mathrm{SO}_{3}{ }^{-2}$
- Carbonate $\mathrm{CO}_{3}{ }^{-2}$
- Chromate $\mathrm{CrO}_{4}{ }^{-2}$
- Dichromate $\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$
- Phosphate $\mathrm{PO}_{4}{ }^{-3}$
- Phosphite $\mathrm{PO}_{3}{ }^{-3}$
- Ammonium $\mathrm{NH}_{4}{ }^{+1}$

Ternary lonic Compounds

- LiCN
- $\mathrm{Fe}(\mathrm{OH})_{3}$
- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
- NiPO_{4}

Writing Formulas

- The charges have to add up to zero.
- Get charges on pieces.
- Cations from name of table.
- Anions from table or polyatomic.
- Balance the charges by adding subscripts.
- Put polyatomics in parenthesis.

Writing Formulas

- Write the formula for calcium chloride.
- Calcium is Ca^{+2}
- Chloride is Cl^{-1}
- $\mathrm{Ca}^{+2} \mathrm{Cl}^{-1}$ would have $\mathrm{a}+1$ charge.
- Need another Cl^{-1}
- $\mathrm{Ca}^{+2} \mathrm{Cl}_{2}^{-1}$

Write the formulas for these

- Lithium sulfide
- Tin (II) carbonate
- Tin (IV) oxide
- Magnesium fluoride
- Iron (III) phosphate
- Iron (III) sulfide
- $\mathrm{Li}_{2} \mathrm{~S}$
- SnCO_{3}
- SnO_{2}
- MgF_{2}
- FePO_{4}
- $\mathrm{Fe}_{2} \mathrm{~S}_{3}$

Write the names for these

- $\mathrm{NH}_{4} \mathrm{Cl}$
- $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$
- $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
- $\mathrm{Sb}_{2} \mathrm{O}_{3}$
- MnS_{2}
- Ammonium chloride
- Ammonium sulfide
- Barium nitrate
- Antimony (III) oxide
- Manganese (IV) sulfide

Things to look for

- If cations have (), the number is their charge. Electrons lost
- If anion ends in -ate or -ite it is polyatomic

Molecular Compounds

Writing names and Formulas

Molecular compounds

- made of just nonmetals (sharing e-)
- smallest piece is a molecule
- can' t be held together because of opposite charges.
- can' t use charges to figure out how many of each atom

Easier

- lonic compounds use charges to determine how many of each. - Have to figure out charges. - Have to figure out numbers.
- Molecular compounds name tells you the number of atoms.
- Uses prefixes to tell you the number

Prefixes

- 1 mono-
- 3 tri-
- 5 penta-
- 7 hepta-
-9 nona

2 di-
4 tetra-
6 hexa-
8 octa-
10 deca

Prefixes

- 9 nona-
- 10 deca-
- To write the name write two words

Prefix name Prefix name -ide

Name These

- $\mathrm{N}_{2} \mathrm{O}$
- NO_{2}
- $\mathrm{Cl}_{2} \mathrm{O}_{7}$
- CBr_{4}
$-\mathrm{CO}_{2}$
- BaCl_{2}

Write formulas for these

- diphosphorus pentoxide
- tetraiodine nonoxide
- sulfur hexaflouride
- nitrogen trioxide
- Carbon tetrahydride
o phosphorus trifluoride
o aluminum chloride

Acids

Writing names and Formulas

Acids

- Compounds that give off hydrogen ions when dissolved in water.
- Must have H in them.
- will always be some H next to an anion.
- The anion determines the name.

Naming acids

- If the anion attached to hydrogen ends in -ide, put the prefix hydro- and change -ide to -ic acid
- HCl - hydrogen ion and chloride ion
- hydrochloric acid
- $\mathrm{H}_{2} \mathrm{~S}$ hydrogen ion and sulfide ion
- hydrosulfic acid

Naming Acids

- If the anion has oxygen in it
- it ends in -ate of -ite
- change the suffix -ate to -ic acid
- HNO_{3} Hydrogen and nitrate ions
- Nitric acid
- change the suffix -ite to -ous acid
- HNO_{2} Hydrogen and nitrite ions
- Nitrous acid

Name these

- HF
- $\mathrm{H}_{3} \mathrm{P}$
- $\mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{H}_{2} \mathrm{SO}_{3}$
- HCN
- $\mathrm{H}_{2} \mathrm{CrO}_{4}$

Writing Formulas

- Hydrogen will always be first
- name will tell you the anion
o make the charges cancel out.
- Starts with hydro- no oxygen, -ide
o no hydro, -ate comes from -ic, -ite comes from -ous

Write formulas for these

- hydroiodic acid
- acetic acid
- carbonic acid
- phosphorous acid
- hydrobromic acid

Two Types of Compounds

1 Molecular compounds

- Made of molecules.
- Made by joining nonmetal atoms together into molecules.
- Electrons are shared

