Chemical Nomenclature

- > The first names for chemicals were common names:
 - Sugar, quicklime, Epsom salts, milk of magnesia, gypsom, laughing gas
 - Simple, but not practical, the tell us little about the chemicals involved in the compounds
 - More than four million chemical compounds are known

<u>Chemical Nomenclature:</u> " A systematic system for naming chemical compounds that will tell you something about the composition of the compound "

Once the system is known a compound can be named from its chemical formula

Naming Chemical Compounds

Binary Compounds: " Compounds composed of two elements "

> There are two classes of binary compounds:

- Compounds that contain a metal and a nonmetal atom
- Compounds that contain two nonmetals

Naming Compounds that Contain a Metal and a Nonmetal Atom

Binary Ionic Compound: " A substance that contains a positive ion (cation) and a negative ion (anion) "

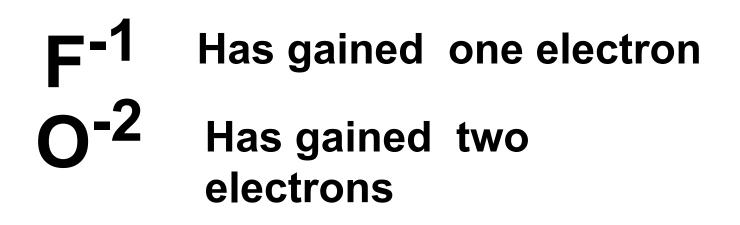
> The positive ion is always written first in the formula

Example:

 $Na^+ + Cl^- \longrightarrow NaCl$

Sodium Chloride is a Binary Ionic Compound

G 5.0 Nomenclature,


continue....

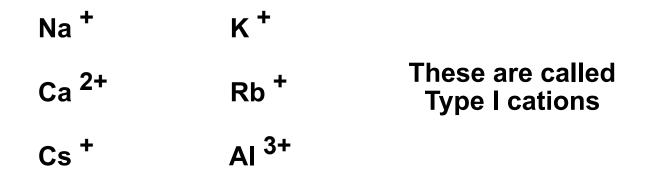
3

Atoms are electrically neutral.
Same number of protons and electrons.
Ions are atoms, or groups of atoms, with a charge.
Different numbers of protons and electrons.
Only electrons can move.
Gain or lose electrons.

Anion

A negative ion. Has gained electrons. Non metals can gain electrons. Charge is written as a super script on the right.

Cations


- Positive ions.
- Formed by losing electrons.
- More protons than electrons.
- Metals form cations.

K⁺¹ Has lost one electron Ca⁺² Has lost two electrons

Naming Ionic Compounds: a Metal and a Nonmetal Atom

<u>Type I Compounds:</u> " The metal present forms only one type of cation "

Example: These metals always form only one cation

You Must Commit These and Other Type I Cations to Memory

Naming Compounds that Contain a Metal and a Nonmetal Atom (cont)

<u>Type II Compounds:</u> " The metal preset can form two (or more) cations that have different charges "

Example: These metals can form more than one cation

Fe ²⁺	Fe ³⁺	
Cu ⁺	Cu ²⁺	These are called Type II cations
Cr ²⁺	Cr ³⁺	Type II cations
Cr ⁶⁺		

You Must Commit These and Other Type II Cations to Memory

G 5.0 Nomenclature,

continue....

8

Naming Type I Binary Ionic Compounds

Rules for naming Binary Ionic Compounds:

- 1) The cation is always named first and the anion second
- 2) A simple cation (obtained from a single element) takes its name from the name of the element
 - K + is named potassium in the name of compounds containing this ion
- 3) A simple anion (obtained from a single element) is named by taking the first part of the element name (the root) and adding *- ide*
 - F from the element fluorine becomes fluoride
- KBr Potassium bromide
- Csl Cesium iodide
- CaO Calcium oxide
- Al₂O₃ Aluminum oxide

G 5.0 Nomenclature,

MgCl2Magnesium chlorideNaBrSodium bromideRbIRubidium iodide

Naming Type II Binary Ionic Compounds

Iron can exist as one of 2 cations:

Fe²⁺ Fe³⁺

Copper can exist as one of 2 cations:

Cu⁺ Cu²⁺

The name " copper chloride " alone would not tell the state of the copper cation in the compound

CuCl or CuCl₂ ?

G 5.0 Nomenclature,

Naming Type II Binary Ionic Compounds (cont)

Type II binary ionic compounds are named using roman numerals to designate the charge on the cation

copper(I) chloride	X	Cu ⁺	X	CuCl
copper(II) chloride	X	Cu ²⁺	X	CuCl ₂

The roman numeral tells the charge on the element copper in the compound

iron(II) chloride	X	Fe ²⁺	X	FeCl ₂
iron(III) chloride	X	Fe ³⁺	X	FeCl ₃

Naming Binary Compounds that Contain Only Nonmetal Atoms -

Rules for naming Type III Binary Compounds

- 1) The first element in the formula is named first, and the full element name is used
- 2) The second element is named as if it were an anion
- 3) Prefixes are used to denote the number of atoms present

mono	1	penta	5
di	2	hexa	6
tri	3	hepta	7
tetra	4	octa	8

4) The prefix " mono " is never used for naming the first element CO carbon monoxide G 5.0 Nomenclature, 12

Naming Binary Compounds that Contain Only Nonmetal Atoms - Type III Compounds (cont)

<u>Examples:</u>	IF ₅	lodine pentafluoride
	BF ₃	boron trifluoride
	N ₂ O ₅	dinitrogen pentoxide
	CCI ₄	carbon tetrachloride
	NO ₂	nitrogen dioxide

Naming Compounds that Contain Polyatomic lons

Polyatomic lons: " lons that are composed of several atom bound together "

Polyatomic ions are assigned special names. Find these on the back or your periodic table

Example:

Ammonium Nitrate

 NH_4NO_3

Made up of two ions:

 NH_4 + Ammonium NO_3 - Nitrate

G 5.0 Nomenclature,

Naming Compounds that Contain Polyatomic lons (cont)

The Common Polyatomic lons

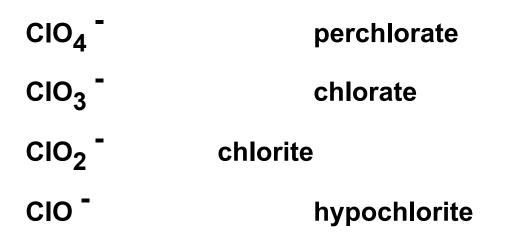
NH_4 +	ammonium	C ₂ H ₃ O ₂ ⁻	acetate
NO ₃ -	nitrate		
so ₄ ²⁻	sulfate		
OH -	hydroxide		
CN ⁻	cyanide		
PO ₄ ³⁻	phosphate		
CO ₃ ²⁻	carbonate		
CIO ₃ [–]	chlorate		continuo

Naming Polyatomic Ions (cont)

Some elements form polyatomic anions with different numbers of oxygen atoms			
Oxyanions: " polyatomic anions of an element with different numbers of oxygen atoms "			
Example:	so ₄ ²⁻	sulfate	
	SO3 2-	sulfite	
When there are two oxyanions:			

- The one with the larger number of oxygen atoms ends in " ate "
- The one with the smaller number of oxygen atoms ends in " ite "

Example:	NO ₃ -	nitrate		
5.0 Nomenclature,	NO ₂ -	nitrite	continue	16


G

Naming Polyatomic Ions (cont)

When there are more than two oxyanions in the series:

- *per* " (more than) is used to name the oxyanion with the most oxygen atoms
- *" hypo "* (less than) is used to name the oxyanion with the fewest oxygen atoms

Example:

G 5.0 Nomenclature,

Naming Polyatomic Ions (cont)

Naming ionic compounds that contain polyatomic ions is very similar to naming binary ionic compounds

Examples:

NaCN	sodium cyanide
КОН	potassium hydroxide
RbCIO ₂	rubidium chlorite
Ca ₃ (PO ₄) ₂	calcium phosphate

> To name these you must learn to recognize the polyatomic ions

G 5.0 Nomenclature,

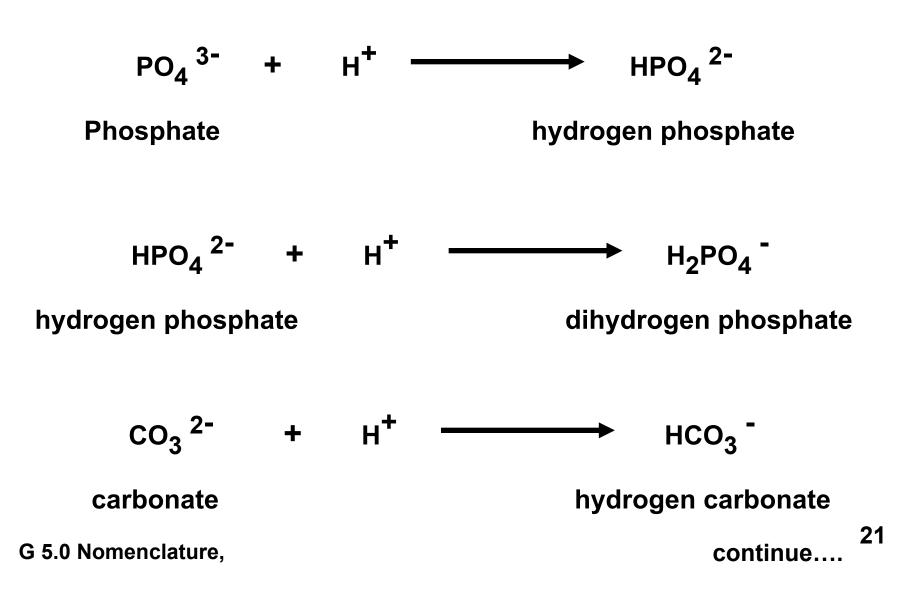
Practice naming & formulas

 $Ti(C_{2}H_{3}O_{2})_{2}$ $NaMnO_{4}$ $Pb(SO_{4})_{2}$ $FeCI_{3}$

Titanium (II) Acetate Sodium Permanganate Lead (IV) Sulfate Iron (III) chloride

Strontium Chromate Potassium Nitrate Vanadium (V) Phosphate Ammonium Carbonate $SrCrO_4$ KNO_3 $V_3(PO_4)_5$ $(NH_4)_2CO_3$

Practice naming & formulas


 Na_2S PCI₃ CO Cu(NO₃)₂

Dinitrogen tetraoxide Lead(IV) carbonate Calcium phosphide Sodium sulfide Phosphorus trichloride Carbon monoxide Copper(II) nitrate

 N_2O_4 Pb(CO₃)₂ Ca₃P₂

Adding a Proton (H⁺) to Polyatomic lons

> Follow the rules for naming Type III compounds

Naming Acids

- <u>Acid:</u> " A compound that produces H⁺ ions (protons) when dissolved in water "
 - An acid is a molecule (or compound) in which one or more H⁺ ions (protons) are attached to an anion

Rules for Naming Acids:

1) If the anion <u>does not contain oxygen</u>, the acid is named with the prefix " *hydro* " and the suffix " *ic* " is attached to the root name for the element or compound.

HCI dissolved in water:hydrochloric acidHF dissolved in water:hydrofluoric acidHBr dissolved in water:hydrobromic acidHCN dissolved in water:hydrocyanic acid

G 5.0 Nomenclature,

continue....²

Naming Acids (cont)

- 2) When the <u>anion contains oxygen</u>, the acid name is formed from the root name of the central element of the anion, or the anion name, with a suffix of " ic " or " ous "
- > When the anion name ends in " *ate* ", the suffix " *ic* " is used

Acid	Anion	Name
H ₂ SO ₄	SO ₄ ²⁻ (sulfate)	sulfuric acid
H ₃ PO ₄	PO ₄ ³⁻ (phosphate)	phosphoric acid
HC ₂ H ₃ O ₂	C₂H₃O₂ [−] (acetate)	acetic acid

G 5.0 Nomenclature,

continue....²³

Naming Acids (cont)

➢ When the anion name ends in " ite ", the suffix " ous " is used <u>Acid</u> <u>Anion</u> <u>Name</u> H₂SO₃ SO₃ ^{2−} (sulfite) sulfurous acid HNO₂ NO₂ [−] (nitrite) nitrous acid

Naming the oxy acids of chlorine:

Acid	A	nion	Name
HCIO ₄	CIO ₄ ⁻	(perchlorate)	perchloric acid
HCIO ₃	CIO ₃ -	(chlorate)	chloric acid
HCIO ₂	CIO ₂ -	(chlorite)	chlorous acid
HCIO		(hypochlorite)	hypochlorous acid 24 end