pH Acid & Base

Auto ionization of water

• $H_2O_{(I)} < ----> H^{+1}_{(aq)} + OH^{-1}_{(aq)}$

Terms and such

- H₃O⁺¹ is the Hydronium ion also represented as the Hydrogen ion H⁺¹
- $H_3O^{+1} = H^{+1}$
- OH⁻¹ is the hydroxide ion
- K_w is always 1.0 x 10⁻¹⁴

 $[H_3O^+] \times [OH^-] = 1.0 \times 10^{-14}$

 $[H_3O^+] \times [OH^-] = K_w$

The pH scale

- The product of hydronium ion and the hydroxide ion
- Instead of exponents we use a scale of whole numbers pH scale is 0 to 14
- Each unit of pH is X10 greater, so pH is a logarithm scale (thus the lower case p)

PH scale

- 0 to 14
- pH of 7 is neutral [H⁺¹] = [OH⁻¹]
- Below 7 is acidic
- Above 7 is basic

Acidic characteristics

- React with metals
- Sweet or sour taste

- [OH⁻] = 10^{-(pOH)}
- [H⁺] = 10^{-(pH)}
- 1.00 x 10⁻¹⁴ = [H⁺¹] [OH⁻¹]
- pH + pOH = 14
- pOH = -log [OH⁻¹]
- pH = -log [H⁺¹]

pH arithmetic

Calculating pH

- If $H^{+1} = 5.6 \times 10^{-5}$ find the pH
- -log[5.6 x 10⁻⁵]= 4.3
- If the pH is 8.7 what is the H⁺¹ concentration?= 2.0 x 10⁻⁹

Types of Acids

- Monoprotic having only one H⁺ ion dissociate
- Diprotic having two H⁺ ions dissociate
- Triprotic having three H⁺ ions dissociate
- H⁺ ions come off one at a time
- Same reasoning applies to bases like Ba(OH)₂
- 2 OH ⁻¹

Examples

- Monoprotic
 - -HCI ----> H^+ + CI^{-1}
- Diprotic
 - $-H_2SO_4$ ----> H^+ + HSO_4^{-1} $-HSO_4^{-1}$ ----> H^+ + SO_4^{-2}
- Triprotic
 - $-H_{3}PO_{4} ----> H^{+} + H_{2}PO_{4}^{-1}$ $-H_{2}PO_{4}^{-1} ----> H^{+} + HPO_{4}^{-2}$ $-HPO_{4}^{-2} ----> H^{+} + PO_{4}^{-3}$

Problem

- Find the Molarity of Sulfuric acid if 25.00 ml of 0.10 M NaOH is used to neutralize 15.0 ml the acid.
- $M_bV_b = M_aV_a$
- 25.00 ml x 0.10 M = M_a x 15.0 ml
- = 0.17 M (diprotic divide by 2) = 0.085 M

Acid Rain

- NO_x & SO_x
- SO_x Industrial sources From coal (high sulfur coal)
- NO_x These gases form from Automobiles exhaust

Gases dissolve in water producing acid rain

• $NO_3 + H_2O ----> HNO_3$