pH Acid \& Base

Auto ionization of water

- $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}<--->\mathrm{H}^{+1}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-1}{ }_{(\mathrm{aq})}$

Terms and such

- $\mathrm{H}_{3} \mathrm{O}^{+1}$ is the Hydronium ion also represented as the Hydrogen ion H^{+1}
- $\mathrm{H}_{3} \mathrm{O}^{+1}=\mathrm{H}^{+1}$
- OH^{-1} is the hydroxide ion
- K_{w} is always 1.0×10^{-14}

The pH scale

- The product of hydronium ion and the hydroxide ion
- Instead of exponents we use a scale of whole numbers pH scale is 0 to 14
- Each unit of pH is X 10 greater, so pH is a logarithm scale (thus the lower case p)

PH scale

- 0 to 14
- pH of 7 is neutral $\left[\mathrm{H}^{+1}\right]=\left[\mathrm{OH}^{-1}\right]$
- Below 7 is acidic
- Above 7 is basic

Acidic characteristics

- React with metals
- Sweet or sour taste

pH arithmetic

- $\mathrm{pH}=-\log \left[\mathrm{H}^{+1}\right]$
- $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-1}\right]$
- $\mathrm{pH}+\mathrm{pOH}=14$
- $1.00 \times 10^{-14}=\left[\mathrm{H}^{+1}\right]\left[\mathrm{OH}^{-1}\right]$
- $\left[\mathrm{H}^{+}\right]=10^{-(\mathrm{pH})}$
- $\left[\mathrm{OH}^{-}\right]=10-(\mathrm{pOH})$

Calculating pH

- If $\mathrm{H}^{+1}=5.6 \times 10^{-5}$ find the pH
- $-\log \left[5.6 \times 10^{-5}\right]=4.3$
- If the pH is 8.7 what is the H^{+1} concentration? $=2.0 \times 10^{-9}$

Types of Acids

- Monoprotic - having only one H^{+}ion dissociate
- Diprotic - having two H^{+}ions dissociate
- Triprotic - having three H^{+}ions dissociate
- H^{+}ions come off one at a time
- Same reasoning applies to bases like $\mathrm{Ba}(\mathrm{OH})_{2}$
- $2 \mathrm{OH}^{-1}$

Examples

- Monoprotic

$$
-\mathrm{HCl}----->\mathrm{H}^{+}+\mathrm{Cl}^{-1}
$$

- Diprotic
$-\mathrm{H}_{2} \mathrm{SO}_{4}---->\mathrm{H}^{+}+\mathrm{HSO}_{4}^{-1}$
$-\mathrm{HSO}_{4}^{-1}---->\mathrm{H}^{+}+\mathrm{SO}_{4}^{-2}$
- Triprotic
$-\mathrm{H}_{3} \mathrm{PO}_{4}-\cdots \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}$
$-\mathrm{H}_{2} \mathrm{PO}_{4}^{-1}---->\mathrm{H}^{+}+\mathrm{HPO}_{4}^{-2}$
$-\mathrm{HPO}_{4}^{-2}---->\mathrm{H}^{+}+\mathrm{PO}_{4}^{-3}$

Problem

- Find the Molarity of Sulfuric acid if 25.00 ml of 0.10 M NaOH is used to neutralize 15.0 ml the acid.
- $\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}=\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}$
- $25.00 \mathrm{ml} \times 0.10 \mathrm{M}=\mathrm{M}_{\mathrm{a}} \times 15.0 \mathrm{ml}$
- $=0.17 \mathrm{M}$ (diprotic divide by 2) $=0.085 \mathrm{M}$

Acid Rain

- $\mathrm{NO}_{\mathrm{x}} \& \mathrm{SO}_{\mathrm{x}}$
- SO_{x} Industrial sources From coal (high sulfur coal)
- NO_{x} These gases form from

Automobiles exhaust

Gases dissolve in water producing acid rain

- $\mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}-\cdots \mathrm{HNO}_{3}$

