## Soluitions

Molarity
Mole solute/liters solution

The molar concentration of a solution, expressed as the number of moles of solute per liter of solution.

## Honework \& reading

- Chapter 18
- section 18.2 Questions 8-13


## Problens

- sample molarity problems


## Molarity problems

- Find the molarity:
- 25.0 grams of NaCl mixed with water to make 2.50 liters of solution
- Find the grams needed to make a 5.0 liter of 0.10 M solution of
$55 \mathrm{~g} \mathrm{CaCl}_{2}$ $\mathrm{CaCl}_{2}$


## NaCl

$\because 25.0 \mathrm{~g} \mathrm{NaCl} \times 1$ mole NaCl $=0.428 \mathrm{~mol}$ 58.4 g NaCl

### 0.428 mol

 2.5 L
## Molarity problems

- What volume of 3.0 M KOH is
- 0.50 L needed to have 1.5 moles of KOH ?


## Solution Dilution

- Often chemists need to dilute a stock solution (like concentrated acids)
- Once the required number of moles is known dilution is easy


## Dilution spreads out the solute particles




Homogeneous and shades

## Dilutions

- Molarity $y_{\text {slock }} \times$ Volume $_{\text {slock }}=$ Molarity $_{\text {dilute }} \times$ Volume $_{\text {dilutie }}$
- $M_{s} \times V_{s}=M_{d} \times V_{d}$ OR
$-M_{1} \times V_{1}=M_{2} \times V_{2}$


## EXAMPLE PROBLEM

Given a stock solution of 12 M HCl mix the following: A chemistry teacher needs 1750 mL of 0.1 M HCl solution. What volume of the stock HCl is required?

- $\mathrm{M}_{\mathrm{s}}=12 \mathrm{M}$
- $\mathrm{V}_{\mathrm{s}}=\mathrm{X}$
- $\mathrm{V}_{\mathrm{d}}=1750 \mathrm{~mL}$
- $M_{d}=0.1 \mathrm{M}$
- Solve for $\mathrm{V}_{\mathrm{s}}$

$$
\begin{aligned}
& V_{s}=\frac{M_{d} \times V_{d}}{M_{s}} \\
& V_{s}=\frac{0.1 \mathrm{M} \times 1.750 \mathrm{~L}}{12 \mathrm{M}} \\
& V_{s}=0.0146 \mathrm{~L}
\end{aligned}
$$

