The Mole

Chapter 7

Homework

Page 175 \#' s 5 \& 6
Page 179\#' s 7 \& 8
6.02×10^{23}

The Mole

- A counting unit
- Similar to a dozen, except instead of 12, it's 602 billion trillion 602,000,000,000,000,000,000,000
- 6.02×10^{23} (in scientific notation)
- This number is named in honor of Assedeo Alyogadro ($1 / 7 / 5-1856)$, who studied quantities of gases and discovered that no matter what the gas was, there were the same number of molecules present

Just How Big is a Mole?

- Enough soft drink cans to cover the
 surface of the earth to a depth of over 200 miles.
- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the United States of America, the country would be covered in popcorn to a depth of over 9 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

Learning Check

Suppose we invented a new collection unit called a rapp. One rapp contains 8 objects.

1. How many paper clips in 1 rapp?
a) 1
b) 4
c) 8
2. How many oranges in 2.0 rapp?
a) 4
b) 8
c) 16
3. How many rapps contain $\mathbf{4 0}$ gummy bears?
a) 5
b) 10
c) 20

The Mole

- 1 dozen cookies = 12 cookies
- 1 mole of cookies $=6.02 \times 10^{23}$ cookies
- 1 dozen cars = 12 cars
- 1 mole of cars = 6.02 X 10^{23} cars
- 1 dozen Al atoms $=12 \mathrm{Al}$ atoms
- 1 mole of Al atoms $=6.02 \times 10^{23}$ atoms

Note that the NUMBER is always the same, but the MASS is very different!
Mole is abbreviated mol (gee, that's a lot quicker to write, huh?)

A Mole of Particles Contains 6.02×10^{23} particles

1 mole $\mathrm{C}=6.02 \times 10^{23} \mathrm{C}$ atoms
1 mole $\mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23} \mathrm{H}_{2} \mathrm{O}$ molecules
1 mole $\mathrm{NaCl}=6.02 \times 10^{23} \mathrm{NaCl}$ "molecules"
(technically, ionics are compounds not
molecules so they are called formula units)

$$
\begin{aligned}
& 6.02 \times 10^{23} \mathrm{Na}^{+} \text {ions and } \\
& 6.02 \times 10^{23} \mathrm{Cl}^{-} \text {ions }
\end{aligned}
$$

Avogadro's Number as a
 Conversion Factor (unit analysis)

6.02×10^{23} particles
1 mole
or

1 mole
$\overline{6.02 \times 10^{23} \text { particles }}$

Note particles could be atom OR molecule OR ions!

Learning Check

1. Number of atoms in 0.500 mole of Al
a) 500 Al atoms
b) $6.02 \times 10^{23} \mathrm{Al}$ atoms
c) $3.01 \times 10^{23} \mathrm{Al}$ atoms
2. Number of moles of S in $1.8 \times 10^{24} \mathrm{~S}$ atoms
a) $1.0 \mathrm{~mole} S$ atoms
b) 3.0 mole S atoms
c) 1.1×10^{48} mole S atoms

Answers

- $\underline{0.5 \mathrm{~mol} \mathrm{Al}} \mathrm{X} \underline{6.02 \times 10}{ }^{23} \mathrm{Al}=3.01 \times 10^{23}$

1

1 mol Al

$\underline{1.8 \times 10^{24}} \mathrm{~S}$ atoms $\mathrm{X} \underline{1 \mathrm{~mol} \mathrm{~S}}=3.0 \mathrm{~mol} \mathrm{~S}$

Molar Mass

- The Mass of 1 mole (in grams)
- Equal to the numerical value of the average atomic mass (get from periodic table)

$$
\begin{array}{lll}
1 \text { mole of C atoms } & =12.0 \mathrm{~g} \\
1 \text { mole of } \mathrm{Mg} \text { atoms } & =24.3 \mathrm{~g} \\
1 \text { mole of } \mathrm{Cu} \text { atoms } & =63.5 \mathrm{~g}
\end{array}
$$

Other Names Related to Molar Mass

- Molecular Mass/Molecular Weight: If you have a single molecule, mass is measured in amu's instead of grams. But, the molecular mass/weight is the same numerical value as 1 mole of molecules. Only the units are different. (This is the beauty of Avogadro's Number!)
- Formula Mass/Formula Weight: Same goes for compounds. But again, the numerical value is the same. Only the units are different.
- THE POINT: You may hear all of these terms which mean the SAME NUMBER... just different units

Learning Check!

Find the molar mass
(usually we round to the tenths place)
A. 1 mole of Br atoms $=79.9 \mathrm{~g} / \mathrm{mole}$
B. 1 mole of Sn atoms $=118.7 \mathrm{~g} / \mathrm{mole}$

Molar Mass of Molecules and Compounds

Mass in grams of 1 mole equal numerically to the sum of the atomic masses

1 mole of $\mathrm{CaCl}_{2}=111.1 \mathrm{~g} / \mathrm{mol}$
1 mole Ca x 40.1 g/mol
+2 moles $\mathrm{Cl} \times 35.5 \mathrm{~g} / \mathrm{mol}=111.1 \mathrm{~g} / \mathrm{mol} \mathrm{CaCl}_{2}$
1 mole of $\mathrm{N}_{2} \mathrm{O}_{4} \quad=92.0 \mathrm{~g} / \mathrm{mol}$

Learning Check!

A. Molar Mass of $\mathrm{K}_{2} \mathrm{O}=$? Grams/mole

$$
\begin{aligned}
& \mathrm{K}=39.0 \times 2=78 \mathrm{~g} \\
& \mathrm{O}=16.0 \mathrm{~g} \times 1=16 \mathrm{~g} \text { total }=94 \mathrm{~g} \\
& 94 \mathrm{~g} \mathrm{~K} 2 / \mathrm{mol} \mathrm{~K}_{2} \mathrm{O}
\end{aligned}
$$

B. Molar Mass of antacid $\mathrm{Al}(\mathrm{OH})_{3}=$? Grams/mole

Learning Check

Prozac, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.

$=309 \mathrm{~g} \mathbf{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$

mol $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}$

Calculations with Molar Mass

molar mass

Grams \longleftrightarrow Moles

Converting Moles and Grams

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of AI are in 3.00 moles of Al?

$$
3.00 \text { moles AI } \longrightarrow \quad \text { g Al }
$$

1. Molar mass of AI $\quad 1$ mole AI = 27.0 g AI
2. Conversion factors for AI

$\underline{1 \mathrm{~mol} \mathrm{AI}}$ or $\frac{1 \mathrm{~mol} \mathrm{AI}}{27.0 \mathrm{~g} \mathrm{AI}}$

3. Setup 3.00 moles AI $\times \underline{27.0 \mathrm{~g} \mathrm{AI}}$

1 mole AI
Answer $=81.0 \mathrm{~g} \mathrm{Al}$

Learning Check!

The artificial sweetener aspartame (Nutra-Sweet) formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5}$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in 225 g of aspartame?

Atoms/Molecules and Grams

- Since 6.02×10^{23} particles $=1$ mole AND
1 mole = molar mass (grams)
- You can convert atoms/molecules to moles and then moles to grams! (Two step process)
- You can't go directly from atoms to grams!!!! You MUST go thru MOLES.
- That's like asking 2 dozen cookies weigh how many ounces if 1 cookie weighs 4 oz ? You have to convert to dozen first!

Calculations

molar mass Avogadro's number

Grams \longleftrightarrow Moles \longleftrightarrow particles

Everything must go through Moles!!!

Atoms/Molecules and Grams

How many atoms of Cu are present in 35.4 g of Cu ?

$$
\begin{array}{l|c|c}
35.4 \mathrm{~g} \mathrm{Cu} & 1 \mathrm{motCu} & 6.02 \times 10^{23} \text { atoms } \mathrm{Cu} \\
\hline & 63.5 \mathrm{gCu} & 1 \mathrm{mot} \mathrm{Cu} \\
& =3.4 \times 10^{23} \text { atoms } \mathrm{Cu}
\end{array}
$$

Learning Check!

How many atoms of K are present in 78.4 g of K ?

Learning Check!

What is the mass (in grams) of 1.20 X 10^{24} molecules of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$?

Learning Check!

How many atoms of O are present in 78.1 g of oxygen?

$78.1 \mathrm{gO}_{2}$	$1 \mathrm{motO}_{2}$	6.02×10^{23} molecules O_{2}	2 atoms O
	$32.0 \mathrm{gO}_{2}$	$1 \mathrm{mot}_{2}$	$1 \underline{\mathrm{molecule}_{2}}$

Percent Composition

What is the percent carbon in $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NO}_{4}$ (the glutamic acid used to make MSG monosodium glutamate), a compound used to flavor foods and tenderize meats?
a) $8.22 \% \mathrm{C}$
b) $24.3 \% \mathrm{C}$
c) $41.1 \% \mathrm{C}$

Chemical Formulas of Compounds

- Formulas give the relative numbers of atoms or moles of each element in a formula unit - always a whole number ratio (the law of definite proportions).
$\mathrm{NO}_{2} \quad 2$ atoms of O for every 1 atom of N

1 mole of NO_{2} : 2 moles of O atoms to every 1 mole of N atoms

- If we know or can determine the relative number of moles of each element in a compound, we can determine a formula for the compound.

Types of Formulas

- Empirical Formula

The formula of a compound that expresses the smallest whole number ratio of the atoms present.

Ionic formula are always empirical formula

- Molecular Formula

The formula that states the actual number of each kind of atom found in one molecule of the compound.

To obtain an Empirical Formula

1. Determine the mass in grams of each element present, if necessary.
2. Calculate the number of moles of each element.
3. Divide each by the smallest number of moles to obtain the simplest whole number ratio.
4. If whole numbers are not obtained" in step 3), multiply through by the smallest number that will give all whole numbers

Be careful! Do not round off numbers prematurely

A sample of a brown gas, a major air pollutant, is found to contain 2.34 g N and 5.34 g O . Determine a formula for this substance.

$$
\text { moles of } \mathrm{N}=\underline{14.01 \mathrm{~g} / \mathrm{mole}}=0.167 \text { moles of } \mathrm{N}
$$

moles of $\mathrm{O}=5.34 \mathrm{~g}=0.334 \mathrm{moles}$ of O
$16.00 \mathrm{~g} / \mathrm{mole}$
Formula:
$\mathrm{N}_{0.167} \mathrm{O}_{0.334}$

Calculation of the Molecular Formula

A compound has an empirical formula of NO_{2}. The colourless liquid, used in rocket engines has a molar mass of $92.0 \mathrm{~g} / \mathrm{mole}$. What is the molecular formula of this substance?

A substance has the following composition by mass: 60.80 \% Na ; 28.60 \% B ; 10.60 \% H

What is the empirical formula of the substance?

Consider a sample size of 100 grams
This will contain $\mathbf{2 8 . 6 0}$ grams of B and 60.8 g Na and 10.60 grams H

Determine the number of moles of each
Determine the simplest whole number ratio

