The Mole

Chapter 7

Homework

Page 175 #'s 5 & 6

Page 179 #'s 7 & 8

6.02 X 1023

1

The Mole

- A counting unit
- Similar to a dozen, except instead of 12, it's 602 billion trillion 602,000,000,000,000,000,000,000
- 6.02 X 10²³ (in scientific notation)
- This number is named in honor of Amedeo Avogadro (1776 – 1856), who studied quantities of gases and discovered that no matter what the gas was, there were the same number of molecules present

Just How Big is a Mole?

- Enough soft drink cans to cover the surface of the earth to a depth of over 200 miles.
- If you had Avogadro's number of unpopped popcorn kernels, and spread them across the United
 States of America, the country would be covered in popcorn to a depth of over 9 miles.
- If we were able to count atoms at the rate of 10 million per second, it would take about 2 billion years to count the atoms in one mole.

Suppose we invented a new collection unit called a rapp. One rapp contains 8 objects. **1. How many paper clips in 1 rapp?** a) 1 b) 4 **c)** 8 2. How many oranges in 2.0 rapp? a) 4 **b)** 8 16 3. How many rapps contain 40 gummy bears? 10

The Mole

- 1 dozen cookies = 12 cookies
- 1 mole of cookies = 6.02 X 10²³ cookies
- 1 dozen cars = 12 cars
- 1 mole of cars = 6.02 X 10²³ cars
- 1 dozen Al atoms = 12 Al atoms
- 1 mole of AI atoms = 6.02 X 10²³ atoms

Note that the NUMBER is always the same, but the MASS is very different! Mole is abbreviated mol (gee, that's a lot quicker to write, huh?)

A Mole of Particles Contains 6.02 x 10²³ particles

- 1 mole C = 6.02×10^{23} C atoms
- 1 mole $H_2O = 6.02 \times 10^{23} H_2O$ molecules
- 1 mole NaCl = 6.02×10^{23} NaCl "molecules"

(technically, ionics are compounds not molecules so they are called formula units) 6.02 x 10²³ Na⁺ ions and 6.02 x 10²³ Cl⁻ ions

Note particles could be <u>atom OR molecule</u> OR <u>ions</u>!

1. Number of atoms in 0.500 mole of Al

- a) 500 Al atoms
- b) 6.02 x 10²³ Al atoms
- c) 3.01 x 10²³ Al atoms

2.Number of moles of S in 1.8 x 10²⁴ S atoms

- a) 1.0 mole S atoms
- b) 3.0 mole S atoms
- c) 1.1 x 10⁴⁸ mole S atoms

Answers

• $0.5 \mod A1 \propto 6.02 \times 10^{23} A1 = 3.01 \times 10^{23}$ 1 1 mol Al

 $\frac{1.8 \times 10^{24} \text{ S atoms } \text{X}}{1 \text{ mol S}} = 3.0 \text{ mol S}$ $6.02 \times 10^{23} \text{ S atoms}$

Molar Mass

- The Mass of 1 mole (in grams)
- Equal to the numerical value of the average atomic mass (get from periodic table)

1 mole of C atoms	=	12.0 g
1 mole of Mg atoms	=	24.3 g
1 mole of Cu atoms	=	63.5 a

Other Names Related to Molar Mass

- Molecular Mass/Molecular Weight: If you have a single molecule, mass is measured in amu's instead of grams. But, the molecular mass/weight is the <u>same numerical value</u> as 1 mole of molecules. Only the units are different. (This is the beauty of Avogadro's Number!)
- Formula Mass/Formula Weight: Same goes for compounds. But again, <u>the numerical value is the same</u>.
 Only the units are different.
- THE POINT: You may hear <u>all</u> of these terms which mean the SAME NUMBER... just different units

Find the molar mass (usually we round to the tenths place)

A.1 mole of Br atoms = 79.9 g/mole B.1 mole of Sn atoms = 118.7 g/mole

Molar Mass of Molecules and Compounds

Mass in grams of 1 mole equal numerically to the sum of the atomic masses

- **1 mole of CaCl_2 = 111.1 g/mol**
 - 1 mole Ca x 40.1 g/mol
- + 2 moles CI x 35.5 g/mol = 111.1 g/mol CaCl₂

1 mole of N_2O_4 = 92.0 g/mol

A. Molar Mass of $K_2O = ?$ Grams/mole $K = 39.0 \times 2 = 78 \text{ g}$ $O = 16.0 \text{ g} \times 1 = 16 \text{ g}$ total = 94 g 94g K₂O/mol K₂O

B. Molar Mass of antacid Al(OH)₃ = ? Grams/mole

Prozac, C₁₇H₁₈F₃NO, is a widely used antidepressant that inhibits the uptake of serotonin by the brain. Find its molar mass.

 $= 309 \text{ g } C_{17}H_{18}F_{3}NO$ mol C₁₇H₁₈F₃NO

Calculations with Molar Mass

Converting Moles and Grams

Aluminum is often used for the structure of light-weight bicycle frames. How many grams of Al are in 3.00 moles of Al?

3.00 moles Al \rightarrow ? g Al

- **1.** *Molar mass of Al* **1** mole Al = 27.0 g Al
- 2. Conversion factors for AI27.0g Alor1 mol Al1 mol Al27.0 g Al
- 3. Setup
 3.00 moles Al
 x
 27.0 g Al

 1 mole Al

 Answer
 = 81.0 g Al

The artificial sweetener aspartame (Nutra-Sweet) formula $C_{14}H_{18}N_2O_5$ is used to sweeten diet foods, coffee and soft drinks. How many moles of aspartame are present in 225 g of aspartame?

Atoms/Molecules and Grams

- Since 6.02 X 10²³ particles = 1 mole AND
 - 1 mole = molar mass (grams)
- You can convert atoms/molecules to moles and then moles to grams! (Two step process)
- You can't go directly from atoms to grams!!!! You MUST go thru MOLES.
- That's like asking 2 dozen cookies weigh how many ounces if 1 cookie weighs 4 oz? You have to convert to dozen first!

Calculations

Everything must go through Moles!!!

Atoms/Molecules and Grams

How many atoms of Cu are present in 35.4 g of Cu?

35.4 g Cu	1 mol Cu	6.02 X 10 ²³ atoms Cu
	63.5 g Cu	1 mol-Eu

= 3.4 X 10²³ atoms Cu

How many atoms of K are present in 78.4 g of K?

What is the mass (in grams) of 1.20 X 10²⁴ molecules of glucose (C₆H₁₂O₆)?

How many **atoms** of O are present in 78.1 g of oxygen?

Percent Composition

What is the percent carbon in C₅H₈NO₄ (the glutamic acid used to make MSG monosodium glutamate), a compound used to flavor foods and tenderize meats?

a) 8.22 %C
b) 24.3 %C
c) 41.1 %C

Chemical Formulas of Compounds²⁷

 Formulas give the relative numbers of atoms or moles of each element in a formula unit - always a whole number ratio (the law of definite proportions).

NO₂ 2 atoms of O for every 1 atom of N

1 mole of NO₂ : 2 moles of O atoms to every 1 mole of N atoms

 If we know or can determine the relative number of moles of each element in a compound, we can determine a formula for the compound.

Types of Formulas

Empirical Formula

The formula of a compound that expresses the *smallest whole number ratio* of the atoms present.

Ionic formula are always empirical formula

Molecular Formula

The formula that states the *actual* number of each kind of atom found in *one molecule* of the compound.

To obtain an Empirical Formula

- 1. Determine the mass in grams of each element present, if necessary.
- 2. Calculate the number of *moles* of each element.
- 3. Divide each by the smallest number of moles to obtain the *simplest whole number ratio.*
- 4. If whole numbers are not obtained^{*} in step
 3), multiply through by the smallest number that will give all whole numbers

*Be careful! Do not round off numbers prematurely

A sample of a brown gas, a major air pollutant, is found to contain 2.34 g N and 5.34g O. Determine a formula for this substance.

moles of N = 2.34g of N = 0.167 moles of N 14.01 g/mole

moles of O = 5.34 g = 0.334 moles of O 16.00 g/mole Formula:

 $N_{0.167}O_{0.334}$

A compound has an empirical formula of NO₂. The colourless liquid, used in rocket engines has a molar mass of 92.0 g/mole. What is the *molecular* formula of this substance?

Empirical Formula from % Composition

A substance has the following composition by mass: 60.80 % Na ; 28.60 % B ; 10.60 % H

What is the empirical formula of the substance?

Consider a sample size of 100 grams This will contain 28.60 grams of B and 60.8 g Na and 10.60 grams H Determine the number of moles of each Determine the simplest whole number ratio