Warm up question

□ Give the conjugate pairs

 $H_2O + CH_3COO - <---> CH_3COOH + OH^-$

Book reference: Chapter 21 pp. 616 - 618 Questions 1 - 4

Titration

Acid Base chemistry as an analytic tool

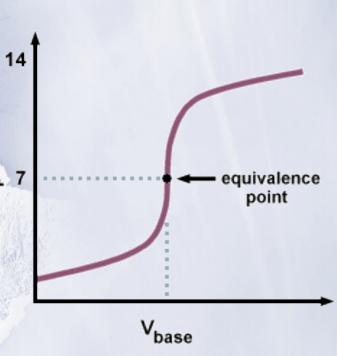
Important lab experience before college

Titration & pH Calculation

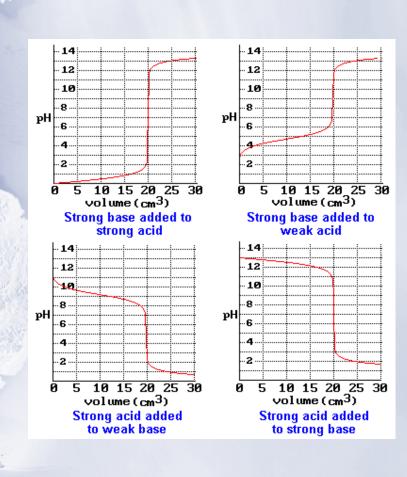
Much like the dilution equation

$$M_{acid} \times V_{acid} = M_{base} \times V_{base}$$

Really this is Moles acid = Moles base


Titration

- - Known Molarity
- Find the volumes of an acid & base
- Add base or acid until "end point or equivalence point" is achieved, a pH of 7 (moles acid = moles base)
- Two methods for determining a pH of 7
 - A color change using a chemical indicator
 - □ A pH meter show the pH change


See this lab example

pH curves

End point equal moles of acid to equal moles of base

pH Curves

Sample problem

What is the molarity of hydrochloric acid if 25.0 mL of the solution Is neutralized by 25.5 mL of 0.50 M KOH?

$$M_b \times V_b = M_a \times V_a$$

0.50 M x 25.5 mL = Ma x 25.0 mL
0.51 M

Find the concentration of acid

If 14.56 mL of 0.10 M NaOH is required to neutralize 20.5 mL of acetic acid (vinegar)

$$M_b \times V_b = M_a \times V_a$$

 $0.10 \text{ M NaOH} \times 14.56 \text{ mL} = \text{Ma} \times 20.5 \text{ mL}$

Ma = .071M